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ABSTRACT

Peer-to-peer technologies are increasingly becoming the medium
of choice for delivering media content, both professional and home-
grown, to large user populations. Indeed, current P2P swarming
systems have been shown to be very efficient for large-scale con-
tent distribution with few server resources. However, such systems
have been designed for generic file distribution and provide a lim-
ited user experience for viewing media content. For example, users
need to wait to download the full video before they can start watch-
ing it. In general, the main challenge resides in designing systems
that ensure that users can start watching a movie at any point in
time, with small start-up times and sustainable playback rates.

In this work, we address the issues of providing a Video-on-
Demand (VoD) using P2P mesh-based networks. We show that
providing high quality VoD using P2P is feasible using a combina-
tion of techniques including (a) network coding, (b) optimized re-
source allocation across different parts of the video, and (c) overlay
topology management algorithms. Our evaluation also shows that
systems that do not optimize in all these dimensions could signif-
icantly under-utilize the network resources resulting in poor VoD
performance. We present our results based on simulations and a
prototype implementation.
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1. INTRODUCTION

Peer-to-peer (P2P) systems have been immensely successful for
large scale content distribution. Current peer-to-peer applications
generate a large percentage of the traffic over the Internet and, more
relevant to this paper, a large fraction of that traffic relates to dis-
tributing video content [30]. However, with current systems, the
users need to download the complete file, and as a result suffer
long delays before they can watch the video. Recently systems
such as CoolStreaming and others [15,32,38] have been very suc-
cessful in delivering live media content to a large number of users
using mesh peer-to-peer technology. However, it has been an open
question whether similar P2P technologies can be used to provide
a VoD service. A P2P VoD service is more challenging to design
than a P2P live streaming system because the system should allow
users arriving at arbitrary times to watch (arbitrary parts of) the
video, in addition to providing low start up delays. The fact that
different users may be watching different parts of the video at any
time can greatly impact the efficiency of a swarming protocol. The
lack of synchronization among users reduces the block sharing op-
portunities and increases the complexity of the block transmission
algorithms.

Peer-to-peer networks promise to provide scalable distribution
solutions without infrastructure support. There are two fundamen-
tal approaches to building P2P systems: (a) tree-based (push) where
trees (or, forests of trees) are usually constructed for dissemina-
tion of data [7, 11, 24], and (b) mesh-based (pull) where peers ex-
change random blocks [18,26]. Mesh-based systems do not en-
force a structure on the overlay topology and, instead, promise
high (swarming) efficiency by allowing peers to exchange random
blocks with each other. As a result, mesh-based systems have lower
protocol overhead, are much easier to design, are more resilient to
high rates of churn, and hence are more popular. However, while
mesh P2P systems have proved to be efficient for bulk file dissem-
ination, it is still an open question how efficient they can be in pro-
viding VoD. The difficulty lies in the fact that users need to receive
blocks “sequentially” (and not in random order) in order to watch
the movie while downloading, and, unlike streaming systems, the
users may be interested in different parts of the movie, and may
compete for system resources. The goal then is to design a P2P
system which meets the VoD requirements, while maintaining a
high utilization of the system resources.

In this paper, we study algorithms that provide the users with
a high-quality VoD service while ensuring a high utilization of
the system resources. We evaluate our algorithms using both ex-
tensive simulations and real experiments. under different user ar-
rival/departure patterns (heterogeneous user capacities etc. are not



addressed in detail due to space constraints). The main results of
this paper can be summarized as follows:

(a) Naive, greedy scheduling algorithms provide bad VoD swarm-
ing throughputs. Applying Network Coding [1, 16, 17] over small
time-windows of the video (e.g. a segment with a few seconds
worth of video frames) reduces the risks of uploading duplicate
content and minimizes the variance in the performance of each
node, thus, improving the overall efficiency of the system.

(b) While Network Coding solves the scheduling problem within
a segment, scheduling across segments (spanning the entire video
file) requires algorithms that avoid under-represented video por-
tions. Such algorithms are feasible and can provide good system
throughput while downloading blocks “pseudo-sequentially”.

(c) The performance of the system, which translates to high utiliza-
tion of system resources and also good user experience, depends
critically on creating proper mesh topologies using efficient peer-
matching algorithms. Such peer-matching algorithms should take
into account both the content at each peer, as well as their band-
width.

(d) We show that by combining network coding, segment schedul-
ing, and peer-matching algorithms we can design P2P systems that
can provide a “play as you download” experience. We show that
with the proposed system the playback rate that the system can
support is close to the peer’s maximum bandwidth with some small
start-up delay (i.e. initial buffering).

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 gives a brief outline of our system.
Section 4 describes our evaluation methodology, as well as, the
simulator and the prototype we have used to evaluate the system.
Section 5 argues that naive extensions to current P2P swarming
systems and shows are inadequate to support VoD. In particular, to
support VoD over mesh P2P technology we need efficient block and
segment scheduling algorithms; they are described in Section 6 and
Section 7 respectively. Topology management is described in Sec-
tion 8. The adaptation of our algorithms in the presence of clients
with heterogeneous capacities is discussed in Section 9.

2. RELATED WORK

Video streaming over the Internet has been on of the most prolific
research areas for over a decade, see [5,9, 21, 36] and the refer-
ences therein. Most related to this work are the research efforts for
designing video distribution systems that can support a large num-
ber of users. Multicasting has been proposed to provide a scalable
video streaming service, even in the presence of non-homogeneous
receivers [25,27,31]. Multicasting is a natural paradigm for live
video streaming. It has been also extended for supporting near-
Video-on-Demand services. The simplest approach is to periodi-
cally start a new broadcast scheme [2]. More elaborate schemes
propose to divide the video into segments and distribute each seg-
ment in different multicast channels [21,22,34]. The main disad-
vantage of such systems is that there is no support for native multi-
casting in the Internet today.

Even though native multicasting is not available, there have been
many proposals to use overlay multicast distribution for live stream-
ing events [8, 14,19,23,33,37]. Observe that such systems support
live media streaming and not near-Video-on-Demand. Moreover,
there is extra network overhead and complexity for maintaining the
overlay topology. It is an open question whether such overlay mul-
ticasting approaches can be extended to support near-VoD, maybe
by using similar approaches as in [22,34]. Inspired by the success
of unstructured P2P networks, the authors in [28, 38] propose to

use mesh-P2P networks for live video streaming. Similarly to our
approach, [28,38] use mesh-based P2P networks and, hence, have
low overhead for topology maintenance, but, unlike our approach,
support live video streaming instead of nVoD.

More relevant to our work are the BASS [13] and BiToS [35]
systems. BASS extends the current BitTorrent system [12] to pro-
vide a near-Video-on-Demand service [13]. BASS assumes that
there is a streaming server, that all nodes connect to the streaming
server, but, all nodes use the P2P network to help each other and
alleviate the load from the server. Even though BASS reduces the
load at the server by a significant amount, the design of the system
is still server oriented, and, hence, the bandwidth requirements at
the server increase linearly with the number of users. In this work
we assume that peers rely only on the P2P network to retrieve the
content; hence, in our approach it is important to understand the
performance of the various block propagation algorithms. Since
in our approach we depend on a dynamic and fluctuating P2P net-
work, we use deeper buffering compared to BASS.

The BiToS system is also based on BitTorrent [35]. The main
idea is to divide the missing blocks into two sets, “high priority
set” and “remaining piece set”, and request with higher probability
blocks from the high priority set. While the emphasis is on careful
scheduling of the video blocks in BiToS, the use of network coding
obviates this problem in our system. Also, we note that BiToS does
not identify the issues with topology management (and instead uses
the standard BitTorrent algorithms).

3. MODEL

We assume a large number of users (referred to also as clients,
nodes, or peers) interested in some video content, which initially
exists on a special peer that we call server. Users are free to arrive
at any point in time and want to watch the video from the beginning
(seek, and fast-forward functionalities are out of the scope of this
paper). In other words, we assume linear viewing, but we allow the
users to join at arbitrary times. The resources (especially network
bandwidth) of the server are limited, and hence users contribute
their own resources to the system. Users organize themselves in an
unstructured overlay mesh which resembles a random graph.

A client joins the system by contacting a central tracker (whose
address is obtained by an independent bootstrap mechanism). This
tracker gives the client a subset of nodes already in the system. The
client then contacts each of these nodes, and incorporates itself into
the overlay mesh. Thus, each node is oblivious of the other nodes
in the system except for a small subset, which we designate as its
neighborhood. Each node can exchange content, as well as control
messages, only with its immediate neighbors.

When a node loses a neighbor (for example, a neighbor crashes)
or wishes to increase its download rate, it can request additional
neighbors. Note that we assume fail-stop behavior from the clients,
i.e., they either function correctly or they cease to be a part of the
system. In particular, they are not actively malicious; this is out of
the scope of this paper.

We assume that the clients themselves are resource-constrained
(esp. network bandwidth). Thus, the download and the upload rates
of a client are limited by its capacity. We consider scenarios where
clients have asymmetric links, i.e., their upload and download ca-
pacities are different.

The file is divided into a number of blocks. A number of consec-
utive blocks may be grouped into segments to improve efficiency.
The system is media codec agnostic, hence, we do not rely on me-
dia format knowledge to recover from errors and packet losses; as a
result, an important constraint of our system is that all blocks needs
to be received without errors by the clients. Clients have enough



storage capacity to keep a copy of all the blocks downloaded up to
that point in time. Blocks can only be played if they are received in
order and they are only available for other peers to download while
the user is watching the video content or shortly after he is done.

In our system, we have considered various arrival patterns, but
focussed on flash-crowd events where most users arrive close in
time after the video is published, and the file initially resides at
a single location with limited upload capacity. We note that typ-
ically, in steady-state, it is possible to find a few nodes that have
downloaded the entire content and can act as servers; the result-
ing increase in serving capacity in steady state eases the problem
of content scheduling. Hence, we have focussed on flash-crowd
arrival patterns because this configuration exercises the system the
most.

4. DESIGN

‘We have used extensive simulations and measurements using a pro-
totype to understand the factors that affect the performance of VoD
over P2P networks, and to evaluate the performance of our algo-
rithms. The simulator models important performance factors, such
as access capacities, block scheduling algorithms, and allows us to
experiment with large networks; it is described in Sec. 4.1. The
implementation gives us a more detailed insight into the operation
of the system; it is described in Sec. 4.2. In Sec. 4.3, we describe
the performance metrics we have used for our study.

4.1 Simulator

The simulator takes as input the size of the video file in units of
blocks (typically 250 in our simulations), the number of nodes (typ-
ically 500), their capacities, and the times at which nodes join/depart
the system. The simulator operates in discrete intervals of time
called rounds. A client’s upload/download capacity is given as the
number of blocks that the client can transmit/receive in one round
(typically 1). Each node connects to a small number of neighbors
(typically 6-8). The topology changes during the simulation as a
result of node arrivals and departures, and as the nodes try to find
new neighbors to increase their download rates.

Atevery round, each node contacts its neighbors to identify those
that have useful blocks. Then, there is a random matching of peers
that can exchange content. All block transfers, both between peers
and from the server, happen simultaneously, and then the system
moves to the next round.

Note that while our simulator does not model realistic P2P net-
works in all their details (e.g. does not model network delays, lo-
cality properties etc.), it does capture some of the important prop-
erties of mesh-based P2P networks. Hence, we feel that many of
our results are applicable to the design of real mesh-based systems.

4.2 Implementation

‘We have developed a prototype to validate our results in a realistic
setting. The system resembles typical P2P systems [16] and con-
sists of three types of participants: peers, a tracker, and a logger.
Content is seeded into the system by a special peer called server.
The tracker enables peer discovery and peer matching. The active
peers periodically report to the tracker (e.g. information about their
content, rates etc.), and the tracker provides a subset of the active
peers to nodes that have too few neighbors. The logger is an aggre-
gation point for peer and tracker trace messages. Every peer in the
system reports detailed statistics to the logger; using those statistics
we are able to perform an in-depth evaluation of the various system
parameters. We rate-limit the upload and download capacities of
the peers using a token bucket based algorithm.

Each peer maintains 6-8 connections to other peers. Peers pe-
riodically connect to other peers at random and drop connections
in an attempt to find better neighbors and increase their download
rates. When testing network encoded transfers, we perform the en-
coding and decoding operations over a Galois Field GF(2'%); we
also experiment with unencoded transfers. In most of our exper-
iments, the file is divided into 100 original blocks (we have also
experimented with larger number of blocks obtaining similar re-
sults).

In this paper, we will use our implementation to study small scale
scenarios, which will highlight the design principles and interac-
tions that need to govern an efficient VoD P2P-swarming system.

4.3 Methodology

The goal of our system is to ensure a low setup time (or initial
buffering), and a high sustainable playback rate for all users, re-
gardless of their arrival time. To evaluate the performance experi-
enced by the user we do the following: For each user we plot the
number of consecutive blocks from the beginning that the user has
downloaded as a function of time (or rounds, in the case of simula-
tions) (see Fig. 1). These blocks can be played without interruption.
For a given setup time (i.e. amount of initial buffering), we calcu-
late the sustainable playback rate as the maximum slope of a line
that does not exceed the y-coordinate at any time. We call that rate
the goodput. We typically report the median or average goodputs
over all nodes and over multiple runs; when appropriate we also
report the minimum and maximum values.

We are also interested in the total number of blocks exchanged
per round, which we call throughput. This metric relates to the
utilization of the system resources. Respectively we define the node
throughput as the amount of information downloaded by a node in
a unit of time. Observe that not all transfers increase the goodput.
Hence, our objective is to maximize throughput for high system
efficiency, while providing high goodput to ensure good playback
rates for all nodes. In this paper, we show that this task, while
non-trivial, is indeed feasible.

Block arrival curve

# Blocks

Playback rate
f—] .
Setup Time

Figure 1: This hypothetical graph shows the calculation of sus-
tainable playback rate, given the setup time. The y-axis shows the
number of consecutive blocks, while the x-axis shows the time.

5. NAIVE APPROACHES

In this section, we experiment with simple algorithms using a sim-
ulated network of 500 nodes all arriving at the same time (flash
crowd scenario). We shall see that the naive algorithms do not per-
form well.

Our first algorithm is inspired by current swarming systems that
distribute the blocks of the file in random order. This strategy re-
sults in high block diversity and good system throughput. How-
ever, nodes receive blocks in random order that may not be useful
to sustain a high goodput. In Fig. 2 we plot the average sustainable
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Figure 2: Comparison of block scheduling

playback rate (i.e. goodput) as a function of the initial buffering.
Observe that the rate is given as a fraction of the access link ca-
pacity, which is a natural upper limit on the maximum sustainable
playback rate. Indeed, the average rate is less than 1% of the access
link capacity, even though the system throughput is quite high with
an average of 332.44 block exchanges per round (out of 500 max-
imum). Hence, despite the high throughput, the random method
results in low goodputs and bad performance for video distribution.

Since nodes consume the blocks of the video sequentially, a nat-
ural algorithm could be to download the blocks in the playout order,
i.e. sequentially. Indeed, Fig. 2 suggests that this policy performs
better than random and is able to sustain playback rates of roughly
13.2%. Observe, however, that the peers have very similar blocks
and hence there are fewer chances to find and exchange innovative
blocks. Indeed, the throughput of the system reduced to an average
of 65.97 block exchanges per round (15% of the total capacity),
which in turn decreased the playback rate.

The segment-random policy attempts to combine the high swarm-
ing rate of random and the good playback rate of sequential. The
method divides the file into segments which are groups of consecu-
tive blocks; for example a file of 250 blocks is divided into 25 seg-
ments of 10 blocks each. The peers request blocks at random within
a segment, but request segments in order. Fig. 2 suggests that seg-
ment random has a reasonable mean progress per round (170.21)
and better playback rates (35%) than the other algorithms. How-
ever, the performance of the segment-random policy is still quite
low.

In addition to the naive approaches described above, we experi-
mented with a number of block scheduling policies (some leverag-
ing even global knowledge of the system) to discover good heuris-
tics. A consistent observation was that greedy policies performed
quite badly, while algorithms which required clients to download
blocks that are not of immediate interest to them, but are from
under-represented segments, improved the overall performance of
the system.

5.1 Pre-fetching

We now study the effect of pre-fetching, i.e. probabilistically fetch-
ing a block that is needed later than the immediate segment of inter-
est. The idea with pre-fetching is that nodes download blocks from
the future segments with a small probability. Even though these
block downloads are not immediately useful, and could be consid-
ered as "wasted” downloads from a client’s point-of-view, they still
hold an overall benefit for the system. The reason is that nodes
doing pre-fetching for future segments, act as launching pads for
the content that they pre-fetch. In essence, pre-fetching provides

easy access to blocks when they are needed by creating additional
sources for future blocks and minimizing the overhead of block
propagation from remote locations. The end result is a smoother
transition across segments.

We have considered a number of policies some of which pre-
fetch from all the required segments, some of which only consider
a few segments into the future, and policies with different proba-
bilities of pre-fetching. The policy which performed consistently
well across various scenarios is the following. Each peer considers
the first two segments of blocks that it needs. The peer chooses be-
tween the segments using a biased coin, typically it picks the first
segment with 90% probability and the second segment with 10%
probability. Within each segment, it downloads a particular block
following one of the block policies described earlier on.

In Figure 3, we highlight the benefits of pre-fetching. We plot
the progress of a client doing a local-rarest policy with and without
pre-fetching. We note that the valleys are not as deep with pre-
fetching, thus providing smoother segment transitions. In fact, the
mean progress per round improves from 203.04 to 226.71 with pre-
fetching. Doing pre-fetching, blocks are pre-populated at different
parts of the network, and act as additional sources that can speed
up block propagation when blocks are needed. The tradeoff is that
while pre-fetching hurts the propagation of the current segment at a
few nodes, it also improves the height of the valleys for most nodes,
and we note that the advantages far outweigh its disadvantages.
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Figure 3: The above graph demonstrates the benefits of prefetching.

6. NETWORK CODING

In this section, we study network coding techniques to optimize the
goodput of the nodes, and the system’s progress. Network coding
has been proposed for improving the throughput of a network for
bulk data transfer [1,10,17]. Network coding makes optimal use of
bandwidth resources, and bypasses the block-scheduling problem
by allowing all nodes to produce encoded data blocks. A good
overview of network coding can be found in [29].

With network coding, any received block is useful with high
probability. On the other hand, the node has to wait to download
the complete file before it can start decoding. This is not accept-
able in the context of VoD systems where a node wants to play the
blocks soon after the download begins. We avoid this problem by
restricting network coding to segments. A node only needs to wait
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until it downloads a complete segment before it can start decod-
ing. This limits the benefits of coding since an encoded block is
only useful to other nodes interested in a particular segment (rather
than all the nodes). Moreover, this imposes an initial buffering time
which is at least one segment size. (Note that non-uniform segment
sizes can be used to minimize this start-up delay.) However, cod-
ing prevents the occurrence of rare blocks within a segment, and
ensures that bandwidth is not wasted in distributing the same block
multiple times. In essence, coding minimizes the risk of making
the wrong upload decision.

We have evaluated the efficacy of network coding with our sim-
ulator and our prototype. Fig. 2) compares network coding against
non-coding heuristics. (Please refer to [3] for the terminology used.)
We note that network coding achieves a goodput of 62%, while the
best rate without using network coding is 42% (with a setup time
of 30 rounds). Also, the average progress of the system is 293.52
blocks with network coding, as compared to 209.57 without cod-
ing.

We now present the results from our implementation and evalu-
ate the benefits of network coding. Consider a flash-crowd where
20 clients By, join the network. The server has the entire file (100
blocks) divided into 10 segments; network coding is applied over
all the blocks in a segment. A segment is decoded on-the-fly as
soon as 10 linearly independent blocks are received for each seg-
ment.

We compare this to a global-rarest policy which does not use
network coding. In the global-rarest scheme, a client requests the
globally rarest block in the target segment of its interest, either from
the server or from its neighborhood. Note that this scheme requires
global information which is not available in such a system, and
is considered only for comparison purposes. Note also that this
scheme performs the best amongst non-coding policies.

Fig. 4(a) and 4(b) show the throughput and the goodput of the
nodes in the system with the global-rarest and network coding poli-
cies. The bars mark the maximum and minimum value. Given that
global-rarest uses global information about the system, we would
expect that it performs optimally. However, this is not the case.
Network coding provides a greater throughput than the global-rarest
scheme (about 14% better), and, more importantly, it results in sig-
nificantly less variance and more predictable download times. We
have also observed that network coding provides greater benefits in
other scenarios that include dynamic arrivals and departures, het-
erogeneous network capacities, and limited peer network visibility.
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Figure 5: Average throughput in a flash-crowd (B1...20 join when
A is 75% done) under different segment policies.

In summary, network coding minimizes the risk of uploading
duplicate blocks within a segment. To further improve the perfor-
mance of the system, the next section considers better algorithms
for scheduling across segments.

7. SEGMENT SCHEDULING POLICIES

‘We now take a deeper look at how segment policies can impact the
performance of a VoD P2P system. To this end, we will use our
implementation to get a better understanding of all the interactions
in a realistic setting.

Segment policies form the analogue of the block scheduling prob-
lem ( [3]) at the segment granularity. As with naive block schedul-
ing, we show that a naive segment policy where clients greedily
request blocks from their earliest incomplete segments adversely
affects the system throughput. While block scheduling inside a
segment is amenable to coding, coding cannot be used across seg-
ments since the entanglement it creates prevents streaming VoD.
Instead, we propose a heuristic-based solution that schedules seg-
ments according to how poorly they are seeded in the network. This
approach is similar in spirit to traditional rarest-first approaches
(though the caveats are not discussed due to space constraints).

Segment policy affects the overall throughput of the system when
not all segments are equally represented in the network. Consider
a scenario where bandwidth-constrained node that contains blocks
from both under-represented and popular segments, uploads blocks
from the under-represented segment. This effect is most prominent
when a flash-crowd arrives in the middle of an ongoing download.
Consider a server that has the entire file, which is divided into 10
segments containing 10 blocks each. The block policy used within
a segment is network coding as described in Section 6. One client A
has downloaded 75% of the file, when a flash-crowd of 20 clients
B,, join the network. For simplicity, we consider nodes having
equal upload and download capacities.

Under naive segment scheduling (as above), the server’s upload
capacity is shared between client A requesting blocks from seg-
ments near the end of the file, and multiple clients, B,, (number
depending on the outbound degree of the server), requesting blocks
from the first segment(s). Since only the server has the end of the
file, and the flash-crowd causes the server’s available upload band-
width to be used in sending blocks from earlier segments, the over-
all network throughput is reduced.



Figure 5(a) shows the throughput experienced by A and the av-
erage throughput of B,, as a function of time. Error bars mark
the maximum and minimum values. From the figure, A initially
enjoys good throughput (rate-limited by the server’s upload band-
width) until the flash-crowd joins. After this point, A’s throughput
is severely reduced as the server re-uploads the initial parts of the
file to some B,s. The server’s upload bandwidth is wasted in up-
loading these segments already represented in the network (at A).

The overall throughput improves if all the nodes seek to improve
the diversity of segments in the network. If the segment policy
is to upload a block from a lesser represented segment whenever
possible (worst-seeded-policy), throughput improves significantly
for both existing and new nodes as seen in Figure 5(b). The fig-
ure plots the throughput for A and B,, under our worst-seeded-first
policy (fully described below). Note that A’s throughput near the
end of the file is noticeably increased, because the server contin-
ues to serve blocks from later segments to B,,, and A subsequently
retrieves these blocks from B,,.

Algorithm 1 SELECTSEGMENT(S,D)

Require: S is source node
Require: D is destination node
. As +— AVAILABLESEGMENTS(S)
Cp <+ COMPLETEDSEGMENTS(D)
P < SORTSEGMENTSWORSTSEEDEDFIRST(A; \ Cp)
Cs < COMPLETEDSEGMENTS(S)
I, <— EARLIERSTINCOMPLETESEGMENT(D)
fori =0... COUNT(P) do

if P, = I, or P; € Cs then

return P;

end if

. end for

SN e A A el >

—

Algorithm 1 describes our worst-seeded-first segment schedul-
ing policy in pseudo-code. We assume that the source node has
knowledge of the rarity of segments aggregated across the other
nodes in the network; the aggregation can be performed either cen-
trally at the tracker, or can be approximated in a distributed fashion
by gossiping between neighboring nodes. Our implementation per-
forms this aggregation at a central tracker.

Our segment policy heuristically increases the diversity of seg-
ments in the network. Amongst the candidate segments available
at the source node and not available in full at the destination node
(lines 1-3), our implementation picks the segment that is least well-
represented (lines 3,6) subject to the conditions on line 7. If the
poorly seeded segment is immediately of interest to the destination
then it is uploaded (clause 1, line 7); otherwise, the source uploads
blocks from segments it has completed downloading (clause 2, line
7), to ensure that the block is globally innovative with high proba-
bility.

Our algorithm hinges on having a good estimate of how well-
represented a segment is. This estimate should include nodes that
have the complete segment, and those that have partially down-
loaded the segment. In our implementation, the tracker monitors
the rarity of segments in the network. Clients in our system re-
port the fraction of blocks they have received from each segment.
Those fractions are used to estimate the popularity of the segments;
for example, a segment is considered under-represented if the vast
majority of nodes have very few blocks from that segment.
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Figure 6: Average goodput in a flash-crowd (B1.. 20 join when A
is 75% done) with and without topology management.

8. TOPOLOGY MANAGEMENT

In this section we look at how topology management can be used to
not only improve the throughput of the system, but also the good-
put observed by individual clients. We study the system behavior
through our implementation as before and use the flash-crowd sce-
nario from Section 7 as our running example.

We will first show how the lack of proper topology manage-
ment algorithms can significantly impact the goodput of individual
clients. For instance, consider Figure 6(a) that plots the average
throughput and goodput of an early node, say A, that has down-
loaded 75% of the file, and a collection of late arrivals, say B,
when using the worst-seeded-first segment policy (with thresholds)
described in Section 7. Observe that A and B,, are interested in
downloading different parts of the video and, hence, have com-
peting interests. The steps in the graph reflect when a node com-
pletes downloading all the coded blocks from a segment and can
decode and watch that segment (goodput). We can see that A has
good goodput (the goodput curve regularly intercepts the through-
put curve) implying that A always downloads blocks that are im-
mediately useful to A. In contrast, B, has worse goodput since
the server penalizes B,, to download worst-seeded segments (from
near the end of the file). Consequently, B,,’s goodput is adversely
affected leading to increased average buffering times and low play-
back rates.

The goal of topology management then is to create (overlay) con-
nections that improve the overall goodput of the system, without
compromising the throughput benefits achieved through segment
scheduling; in effect, this policy implicitly imposes some structure
on the mesh network. Our topology management algorithm is de-
scribed in Algorithm 2. The algorithm essentially tries to retain
connections that demonstrate a high goodput. Thus, it encourages
peers targeting the same parts of the video to communicate with
each other, resulting in a high goodput for the entire length of the
download. A node S is allowed to upload to another node D if
S has not already saturated its upload bandwidth (line 1). If S’s
upload capacity is all used, then S will still accept D only if D
is currently targeting the worst-seeded segment as calculated by
S (lines 4-6). If by accepting D, S crosses its configured limit
for the number of connections, S drops an existing connection that
provides the least goodput to the corresponding neighbour (lines 9—



10). Periodically, nodes that have spare download capacity request
a set of random nodes from the tracker and attempt to download
from them; of course, subject to that node’s acceptance as per the
algorithm. These connection attempts cause nodes in the network
to re-evaluate their goodput, and opportunistically improve it. This
induced connection-churn also encourages neighbor diversity, and
prevents the creation of isolated clusters.

The benefits of topology management can be seen in Figure 6(b).
The topology management algorithm first restricts B, from con-
necting to the server. Instead, Bys are steered to A and the other
By,s. In this process, the server continues to seed innovative con-
tent to A unabated, increasing A’s throughput. At the same time,
A seeds the beginning of the file to some By, which in turn dis-
tributes it amongst the other B,s. Once A finishes downloading,
B,,s are allowed to connect to both A and the server. It is clear
from Figure 6(b), that the proposed topology management policy
both improves the goodput of new nodes (B,,), while retaining the
throughput (and goodput) of old nodes (A).

Algorithm 2 SHOULDUPLOADTO(S,D)

Require: s is the source node
Require: D is the destination node
if HASSPAREUPLOADCAPACITY(S) then
return true
end if
ID < EARLIERSTINCOMPLETESEGMENT(D)
SD «— SELECTSEGMENT(S,D)
if ID # SD then
return false
. end if
: if TOOMANYUPLOADCONNECTIONS(S) then
10:  KICKUPLOADWITHWORSTPEERGOODPUT(S)
11: end if
12: return true

R A A > s

9. HETEROGENEOUS CAPACITIES

In this section, we revisit our segment scheduling and topology
management policies and refine them to handle heterogeneous net-
works where nodes have asymmetric upload and download capaci-
ties (i.e., the capacities are different). As a motivation for our final
algorithm, we present a scenario where a capacity-oblivious seg-
ment policy falters.

Consider a hypothetical network with a fast server, a slow node
A that has downloaded 25% of the file and is connected to the
server, and a flash-crowd B,, of mixed capacity (i.e., both fast and
slow nodes). The distribution of the capacities of the nodes in B,,
is loosely based on [6]. In this scenario, consistent with the forego-
ing discussion, the server uploads the worst-seeded segments (i.e.
those not in A). Since the server has spare capacity, some B,, are
allowed to connect to the server (Alg. 2, line 2). However, they are
forced to download segments that are of no immediate use to them
(e.g. segments near the middle or end of the file), and they only re-
ceive blocks for their immediate segment of interest through node
A, which happens to be slow.

Figure 7(a) shows that heterogeneity-oblivious algorithms (as
presented above) affect not only the goodput, but also the through-
put of fast nodes. In fact, we can see that both the throughput and
the goodput of the fast nodes is reduced to the throughput and the
goodput of the slow nodes (in particular, that of node A). This is
because fast nodes are initially forced to depend on a slow node
(A), which is the only node giving them ‘good’ blocks.
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Figure 7: Average goodput of slow and fast nodes in a flash-crowd
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A small change in the computation of the worst-seeded segment
addresses this problem. The change involves assigning a weight to
the contribution of each node towards the aggregate seeding of each
segment in proportion to that node’s upload bandwidth. This is a
small but significant change to traditional block rarest-first policies,
since it takes into account not only the number of copies of a given
segment, but also how efficiently they can be uploaded into the net-
work. The result of this change, as shown in Figure 7(b), is very
high throughputs and goodputs for both fast and slow nodes, and
very low start-up latencies (e.g. a small percentage of the whole
file). In fact, from Figure 7(b), we can see that fast nodes can target
playback rates that are very close to their bandwidth limits, and are
not throttled by the slow nodes (which also observe good perfor-
mance).

One final important detail of our implementation is the way the
threshold policy in the worst-seeded computation is adapted to in-
clude heterogeneous capacities. The problem is that, if a segment
exists at a large number of nodes (which happen to be slow), the
threshold policy described earlier will consider such segments to
be well represented. But in reality, the segment stored at these
nodes would not propagate well if the upload capacities of such
nodes is very small. To avoid this, our policy needs to dynamically
adjust the threshold policy to include the current seeding capacity
of each segment. For this purpose, in our implementation, we scale
the worst-seeded computation by the peer’s upload capacity (rep-
resented as a fraction between 0 and 1 of the fastest active peer’s
upload capacity). In doing so, nodes are forced to keep download-
ing a segment until that segment has an overall upload capacity
equal to that of the other segments in the system. The new scheme
thus prevents the formation of rare segments.

10. SUMMARY

In this paper we have examined the problem of designing a Video-
on-Demand (VoD) service using mesh-based P2P networks. Mesh-
based P2P systems are relatively simple to engineer and result in
high utilization of system resources, and as a result, they have been
very successful in large scale bulk file distribution. Unfortunately,
however, those systems give very bad performance when used for
VoD. In this paper, we have proposed network coding to improve
the throughput of block distribution across the system, segment
scheduling to further improve the throughput while delivering con-



tent “pseudo sequentially”, and topology management to group to-
gether peers interested in the same part of the video; all these tech-
niques work well together to provide efficient VoD with small setup
delays. Our simulations and experiments suggest that this combi-
nation of network coding, segment scheduling, and topology man-
agement provides a significant improvement in performance com-
pared to other algorithms (even compared to algorithms that use
global knowledge). Though further work is required towards a bet-
ter understanding of the efficacy of our algorithms in more realistic
scenarios, we believe that the guidelines proposed in this paper can
be used to build high-performance P2P VoD systems.

Our system was designed to guarantee that the video starts play-
ing shortly after the beginning of the download, and progresses
without interruptions until the end of the movie. While we have
made an implicit assumption that users watch the entire video lin-
early, we believe that the same principles used in our system could
be extended to support non-linear viewing, i.e., where users would
be able to start watching from arbitrary points in the video and per-
form fast forward and rewind operations (e.g. VCR-type function-
ality). We note that our design already supports seek operations
that reposition the video stream to a part of the video that has al-
ready been downloaded (e.g. rewind, pause); this is due to the fact
that we locally store the entire video while the user is connected to
the system. However, if the user desires to watch a part of the video
that is not available locally, then the user will suffer a (moderate)
waiting time as the system searches for peers to download the de-
sired content from. Designing architectures that minimize this seek
time is an interesting open research problem.
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APPENDIX

In this section, we give a short description of the benefits and the
mechanics of network coding. We illustrate the benefits of network
coding with a simple example (Figure 8). Assume that node A has
already received blocks 1 and 2. Without a scheduler having global
knowledge, node B will download block 1 or 2 with equal proba-
bility. Simultaneously, let’s say node C independently downloads
block 1. If node B were to download block 1, the link between B
and C would be rendered useless.

Source

Block 1
Block 1

Block 2

Node C

Node A Node B

Block 1, or 2, or 1@2‘7

Figure 8: This example shows the benefits of network coding when
nodes only have local knowledge.

With network coding, however, node A routinely sends a linear
combination of the blocks it has (shown in the figure as 1 & 2) to
node B, which can then be used with node C. Note that without a
knowledge of the block transfers in other parts of the network, it’s
not easy for node B to determine the right block to download. But
with network coding, this task becomes trivial.

We now detail how network coding can be used in a P2P system.

In Figure 9, the file exists initially only at the server. When node A
contacts the server, the server combines all the blocks of the file to
create an encoded block E'1. The server picks random coefficients
€1,C2,- -+ ,Cn, and generates E1 = Y7 | ¢;.b;, where b; repre-
sents a block. The server then sends node A, E'1 and the coefficient
vector ¢ = (c;). Note that all the coefficients are chosen from
and the operations done in a finite field ' When node A sends a
block to node B, A similarly combines the already encoded blocks

it has (namely E'1 and E2) and sends node B, the encoded block
—

E3 = ¢;.E1+c5.FE2, and the new coefficient vector ¢;. € +¢s. c.
With network coding, any block that a node receives is useful with
very high probability. The downside of network coding is that a
node often has to wait until it downloads the whole file before it
can start decoding the blocks.
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Figure 9: A brief description of network coding in RedCarpet.

'If the finite field is small in size, there could be “collisions” where
two nodes pick the same set of coefficients, thereby degrading the
performance [20]. Typically, field sizes of 2'° provide enough di-
versity.



