NUTSS: An End-Middle-End Approach to Connection Establishment

Saikat Guha and Paul Francis

Cornell University

SIGCOMM 2007

Originally, Internet supposed to provide:

- 1. User-friendly naming of hosts (DNS)
- 2. Network level identification of hosts (IP address) and best-effort delivery
- 3. Identification of application on host (port)

End-Middle-End: Why?

Implicit assumption:

- Application can defend itself.
 Competent to look inside packet.
- ► Wrong. (DoS, software bugs, ...)
- Resulted in firewalls
 - Compromised end-only control
 - Cannot identify application. Or hosts behind NAT.
 - Resort to deep-packet inspection
 - Endhost unaware
- Made network brittle
- ► Often legitimate connections fail!!!

Required additional Internet services

- 4. Block unwanted packets before they reach application
- 5. Explicit negotiation of middlebox usage.
 - Need not be on data path

End-Middle-End

These services, along with original three, represent the minimum requirements for the Internet.

NUTSS is an architecture and protocol that instantiates End-Middle-End

Primary Goal

Allow connection establishment that honors access control policy of all stakeholders (ends and middle).

Also, middlebox steering, host mobility, anycast, redirection, multi-homing, multicast, protocol negotiation

End-Middle-End and End-To-End

► E2E broken by middleboxes

- Middlebox control in the middle
- Endpoints oblivious of middle, cannot adapt
- EME exposes functionality in the middle
- Allows ends and middle to cooperate in middlebox control
 - Explicit two-way negotiation between ends and middle
 - firewall policy, NAT ports, protocol stack

Names or identifiers?

- Identifiers are scalable, efficient, can be self-certifying BUT not *for* the middle
- ► Middle needs (user-friendly) names for policy
- Must be aggregatable
 - ► Identifiers (HIP, i3, DONA) don't allow for this
 - Need additional *reverse* name resolution
- Internet-wide shared namespace

Where is policy applied?

- ► On-path (on the data path)
 - Privacy (for address-based paths¹)
 - Constraining (name-resolvers on-path)
 - Intrusive (routers route by name)
- ► Off-path (separate control plane)
 - Replicate, deploy far from endpoint (DoS, scalability)
 - But data path is address-based

¹ "Identity Trail: Covert Surveillance Using DNS" in PET '07

- Address-routed path, off by default
- ► Name-routed path, on by default
- ► Overlay of stakeholders.

- Address-routed path, off by default
- ► Name-routed path, on by default
- ► Overlay of stakeholders.

- Address-routed path, off by default
- ► Name-routed path, on by default
- ► Overlay of stakeholders.

- Address-routed path, off by default
- ► Name-routed path, on by default
- ► Overlay of stakeholders.

- Address-routed path, off by default
- ► Name-routed path, on by default
- ► Overlay of stakeholders.

Turning on data path

How to determine impending data path?

- Control plane fixes path
 - Constraining (virtual circuit)
- Control plane guesses path
 - Recovers from incorrect guess

- User-friendly, long-term stable, aggregtable names
- Off-path signaling
 - Name-based overlay
 - Applies policy
 - Authorization token
- On-path signaling (of token)
 - Verify data-path works
 - Referral back to off-path if fail

NUTSS: Components

- ► P-Box/M-Box associated, possibly same device
- ► Also in-host
- ► P-Box overlay (parent-child, fan-in, fan-out)

NUTSS: Components

- ► P-Box/M-Box associated, possibly same device
- ► Also in-host
- ► P-Box overlay (parent-child, fan-in, fan-out)

NUTSS: Components

- ► P-Box/M-Box associated, possibly same device
- ► Also in-host
- ► P-Box overlay (parent-child, fan-in, fan-out)

NUTSS: Name-Routing

Endpoints register with P-Box chain in front. DNS has outermost P-Box address.

NUTSS: Name-Routing

Up (config./discovery), Across (DNS), Down (registration)

NUTSS: Name-Routing (Tokens)

- P-Box gives token (nonce, next-hop) to M-Box via endpoint.
- ► Set of tokens. One for each P-Box/M-Box pair.
- ► Exchange effective addresses (may be of M-Box)

NUTSS: Address-Routing

Once endpoint has effective address and tokens

Referral from M-Box to P-Box

Resumes name-routed signaling for more tokens

Resumes name-routed signaling for more tokens

NUTSS: Some Use Cases

- Mobility
 - Register new address with P-Box overlay. Renegotiate flows.
- ► NAT Traversal
 - Exchange hole-punched address and port over name-routing
- Anycast, Multicast
 - Multiple endpoints share same name
 - P-Box forwards to one (to all for multicast).
 - Address routed path negotiated (possibly application multicast or IP multicast)
- Protocol negotiation
 - Endpoints advertise software stack (transport, security, network etc.)
 - P-Box filter out unsupported stacks

NUTSS: Incremental Deployment

- Update applications to perform dual-signaling.
 3-rd party P-Box service.
 - Implemented as a userspace library. Works with legacy apps.
 - P-Box service on nutss.net
 - NAT traversal helper M-Box on Planetlab
- 2. Networks deploy P-Boxes. Only weak access control (but better than firewalls today).
- 3. Networks deploy M-Boxes. Strong access control.

Summary and Future Work

- End-Middle-End requirements, NUTSS architecture and protocol.
- Need for dual-signaling: Name-routed and address-routed signaling
- Coupling between the two can solve a broad range of Internet problems
 - Network ACL, mobility, multihoming, steering, protocol negotiation, ...
- ► Pursued in the E-M-E RG in the IRTF
- Investigate non-FQDN based naming, non-DNS "across" routing, multipath connections, secure P-Box discovery

http://nutss.net/

Endpoint-only control

- ► TRIAD, i3, IPNL, HIP, SHIM6
- Middle involved only in name resolution
 - ► Metanet, Plutarch, UIA, DONA, AVES
- Off-path only
 - ► SIP
- On-path only
 - ► i3, HIP, RSVP

NUTSS: Optimizations

- ► Lower latency
 - Piggyback application-data in signaling messages
- ► Faster authorization
 - Use self-certifying ID's

NUTSS: Dual-Signaling

Name-routed

- ► ⟨user@domain, app⟩
- ► P-Boxes (overlay)
- Path always exists (Default on)
- Policy decision
- ► Tokens

Address-routed

- ► IP address² and port
- ► M-Boxes (on IP path)
- Initially, does not exist or blocked (Default off)
- Policy enforcement
- ► Referral

²or other address e.g. i3, HIP, etc.