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ABSTRACT

Determining node and event locations is a canonical tasintoty
wireless network applications. Yet dedicated infrasuitefor de-
termining position information is expensive, energy-aonsg, and
simply unavailable in many deployment scenarios. This pppe
sents an accurate, cheap and scalable framework, calledrBex
for determining node position and event location in sengsgr n
works.
geographic constraints based on connectivity informdftiom the
underlying communication network. Sextant achieves higtua
racy by enabling non-convex constraints to be used to refise p
tion estimates. It represents position estimates as pafigmon-
contiguous collections of points. This general repregenmtaen-
ables Sextant to useegative informationthat is, information on
where a node or event is not located, to refine location etgsna
Sextant unifies both node and event detection within the ggne
eral framework. It can provide high precision without dedéx!
localization hardware by aggressively extracting comstsafrom

the link layer, representing areas precisely with Béeiectosed
polygons and probability distributions, and using evertediéon

to refine node position estimates. A compact representationa
fully distributed implementation make the framework pieait for
resource-limited devices. The framework has been implésden
deployed and tested on laptops, PDAs and Mica-2 motes. &#lysi
experiments show that a large numb@8%) of the nodes in a net-
work can determine their positions based on a small nun@ess)

of landmark nodes and that a large number (90%) of eventse&an b
located with low median error.

1. INTRODUCTION

Many critical applications for wireless networks requiretet-
mining the physical location of nodes and events in the nektwo
For instance, a canonical problem in sensor networks is tier-de
mine the location of an event, such as a chemical spill. Ggaac
routing protocols rely on node location in order to forwaatk-
ets with low overhead. Similarly, context-aware applicas need
to determine the locations of network participants in ongecus-
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Sextant operates by setting up and solving a system of

tomize content for users depending on their location. Thasd
many other location-sensitive applications [1, 2, 3, 4,rBfjuire
determining position information with high accuracy and loost.

In this paper, we present a distributed location discoveayne-
work, called Sextant, that extracts geographic consgiat already-
present wireless radios and uses these constraints tanivdierand
event location with high accuracy. Sextant operates byngetip
a system of relative geographic constraints among the mktpar-
ticipants based on network connectivity and solving thistey in
a distributed and efficient manner with the aid of absolutsitfm
information provided by a small number of landmarks. A laadkn
is a node whose absolute position is known; Sextant landsrenk
be cheap static nodes whose positions are fixed, or they maphe
bile nodes equipped with dedicated hardware, such as GPS.

Sextant provides a unified framework that can be used to-deter
mine both node and event location. Sextant nodes equippid wi
sensors can extract and combine constraints about sensets &y
cooperatively determine the geographic location of everitss |o-
cation is represented as a probability distribution over gbnsed
area, which enables application-specific processing toppéeal
in determining the event location. Sextant relies solelyson-
ple, cheap hardware for localization; a wireless radio abthary
event sensor suffice for both node and event localizatiahcastly
hardware and protocols for time synchronization are noteee
Folding both event and node localization into the same fraone
enables sensed events to be used to improve the fidelity & nod
location estimates.

There has been much previous work on node localization and
event detection [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16] , includ
ing foundational work on theoretical lower bounds [17, 18x-
tant differentiates itself from this body of work in severahys.
First, it does not assume uniform transmission radii (i.@niadisk
graph) or symmetric connectivity; instead it extracts gapbic
constraints from the link layer based on a novel, realistitstraint
extraction model that accommodates the large percentagai-of
directional links and non-uniform coverage areas encoedtén
practice. These constraints leachian-convexsolutions, which are
typically much more accurate, though more complex, thaaroes
limited to convex embeddings. They also naturally suppeene
detection with heterogeneous sensors, where wide-arsarsanay
determine an event to have occurred in region R, while moee sp
cific sensors might preclude the presence of that event ifleama
sub-regions S, $- R, giving rise to non-convex event regions.
Second, Sextant explicitly represents node locationgyuBézier
curves, and uses probability distributions to track posrgvent
locations. In contrast with some previous work that reprase|o-
cation estimates as points, representing areas and plibpdlsitri-



bution over areas explicitly vastly improves localizataccuracy,
and Bézier curves greatly reduce the amount of space sstjtor
represent complex, non-convex areas. We show how to extehd a
combine areas made up of piecewise Bézier curves, andhibensc

is simple to generalize to 3D with Bézier surfaces. Thirdx-S
tant propagates constraints throughout the network, amdhesige
them effectively even in the presence of approximate inédiom.

In contrast with some past work that required landmark nades
the one-hop neighborhood in order to perform node locatimat
Sextant can derive accurate constraints even from nodesewho
position is not precisely known, and use these estimatesfitoer
the position estimates of other nodes. Finally, we haveayepl
and tested our scheme on physical testheds consisting tofpkip
and handheld HP Jornadas equipped with 802.11b cards, baswel
50 Mica-2 motes. The algorithm is practical enough to beaeyl

on motes, and robust enough to handle non-uniform behamwior e
countered in real networks.

Sextant aggressively extracts positive and negative nmdtion
from the link layer and converts it into geographical coaistts. By
positive information, we mean a constraint that restrigiede’s or
event's location to a region of finite size. For instance, mpast
work is based on estimating a node’s position by examinsap
count to landmark nodes [19, 9] or triangulation to landmaoles
in the one-hop vicinity [20]. Sextant additionally takes/antage
of negative informationthat is, constraints that preclude a node or
event from appearing in a certain region. For instance, & nioal
does not receive transmissions from another node may determ
that it is outside the transmission range of the sender. W& sh
later that the use of such negative information greatlysases the
fidelity of location estimates for both nodes and events.

We show how to use Bézier curves to explicitly represent the
set ofall points at which a node can be located. Since this set
may consist of disjoint polygons, explicitly representings a set
avoids estimation errors. Bézier curves are resilientrtalkerrors
in the location of control points [21], and in addition, camrepre-
sented very efficiently, reducing packet size. Sextant e&s fhis
set to location-aware applications that can handle setesifipns,
or perform a final mapping to a point in order to support legacy
applications without introducing errors into the system.

Sextant disseminates constraints transitively througti@inet-
work, creating an interdependent web. Transitively prapiag lo-
cation information enables nodes that are not within the éadliate
vicinity of landmarks to determine their location. It alsoables
nodes to extract negative information by discovering thesence
and estimated location of other nodes in the network. Trapbi
combining position estimates enables information fromrsglg
distributed landmarks to be coalesced together to redusitige
ing error.

Overall, this paper makes three contributions. First,scdibes a
unified localization framework for node and event localimat The
framework achieves high accuracy by using non-convex regio
represent node and event locations, taking advantage afineg
as well as positive constraints, and disseminating cangsréran-
sitively throughout the network. Internally, constraiai® repre-
sented precisely and in compact form as collections of pigg
enclosed in Bézier curves, resulting in an accurate andeffiim-
plementation. Second, this paper proposes a novel andtieali
constraint extraction model, and a distributed constraaitition
algorithm. The constraint extraction model enables Séxtamag-
gressively extract constraints from existing hardwarédsaagwire-
less radios and sensors. The distributed algorithm forirsplthe
resulting constraint system is efficient and scalable. @lgerithm
enables nodes without any dedicated positioning hardveade+t

termine their own position and the location of events withha.c-
curacy based on a small number of landmarks. Finally, thiepa
reports results from an actual physical deployment as wsedirau-
lations to show that the approach is both effective and waciWVe
have implemented the location discovery protocol desdrib¢his
paper and tested it on MICA-2 motes [22], laptops and StrangA
based PDAs equipped with 802.11b cards. The physical experi
ment validates the simulations, and shows that Sextantfaste®e

at accurate location discovery.

The rest of the paper is structured as follows. The next@ecti
discusses related work and expands on Sextant’s contitautin
sections 3 through 6, we discuss the basic operation of Sexta
including its area representation, its extraction of caists from
wireless radios and sensors, and its distributed soluéichrtiques
for node and event localization. Section 7 describes hovintiee-
action between node and event localization can be used t@refi
position estimates. Section 8 describes the network pobtesed
to obtain and combine position estimates. Section 9 outlthe
structure and complexity of the Sextant implementatiorctiSe 10
provides results from our simulations and physical expenits and
Section 11 concludes the paper.

2. RELATED WORK

There has been extensive past work on node localization las we
as event tracking in sensor networks (see [23] for a survdygse
systems differ in the way they obtain range measuremerapapr
gate location estimates transitively, utilize positivesies negative
information, and represent potential node locations.

Range measurements can be obtained through simple cannecti
ity, signal strength, time of arrival, time difference ofigal or an-
gle of arrival measurements. Recent work has examineddtiesri
for performing range measurements via hop counts [13]. &Béxt
is agnostic to the choice of range measurements, and asshenes
simplest form of range measurements based on connectititgh
is available from any wireless radio. Dedicated hardwaréofmal-
ization is costly and unavailable under many scenarios.

A common approach to estimating node positions is direct mea
surement or triangulation against landmarks in the immediae-
hop vicinity. Active Badge [24] relies on the closest infdrre-
ceiver to locate specialized beacons carried by trackedsasR ADAR [19]
relies on a centralized database of signal fingerprints fiamd-
marks obtained at all locations and orientations to loeaginode.
Lorincz and Welsh [14] propose a similar RF fingerprint-lshsede
localization technique that relies on strength signataresa dis-
tributed database. Cricket [25] relies on time differentaroival
between radio and ultrasound signals to measure distancksit
icated beacons. VORBA [26] uses angle of arrival measurésnen
from 802.11 basestations to determine node positions. 18-GP
Less [27], a node that can receive transmissions from laridma
L1, L2 and L3 estimates that it is at the centroid of the landk®ma
Since these approaches do not disseminate position estirhat
yond the first hop, they do not support nodes that are outhigle t
range of landmarks.

Other work enables location estimates to be extended traigi
through the network to nodes that are not within the immediat
vicinity of landmarks. APS [9] relies on signal strength aph
counts for triangulation and estimates node positiongistawith
the one-hop neighborhood of landmark nodes and workingitran
tively. A variant of APS [8] relies on angle of arrival measmrents
to perform triangulation and transitively determine piasitand ori-
entation for nodes. GPS-Free [28] relies on time of arrivehsure-
ments to estimate the range between pairs of nodes, cotsdtvoal
coordinate systems at each node, and reconciles them inte a s



gle, absolute coordinate space. Time of arrival and angéerofal
measurements are typically not practical since they requostly
clock synchronization hardware and receiver arrays, rtisedy.
Robust Positioning [20] is a two-phase approach where asyst
loose constraints, built initially by range estimates, iteeatively
refined to improve estimated locations. Robust positionéngg-
nostic to the choice of range measurements, but iteratiireeraent
may never converge, even for static networks. Convex [posés-
timation [29] solves a set of convex geographic constraimta
centralized server to localize nodes. Finally, N-hop Matéra-
tion [30] combines robust positioning and convex positistinea-
tion to formulate a least-squares problem to refine init@difion
estimates. These approaches differ fundamentally frona8ein
that they use only positive information and work only withngex
constraints.

The system proposed by Galstyan et al. [10] is similar initspir
to our approach in that it takes advantage of negative irdtion.
Information on where a node or event cannot be located can sig
nificantly improve the fidelity of location estimates. Thestgm
proposed by Galstyan et al., however, does not support aovex
position estimates. Non-convex areas, that is, areas witlss-
ing subregion, arise naturally from the use of negativerinfation,
though representing them accurately is a challenge. Thisnse
simply uses the largest convex subregion instead, andresginat
each node be in range of at least one landmark.

A significant difference among node localization techngjise
the way they represent estimated locations. Most previoork w
computes a position estimate consisting of a single poineéah
node. Such an estimate might be wildly misleading; for insta
there might be sufficient information to indicate that a niscat the
upper-right, upper-left, lower-right or lower-left pam$ the field.

@
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Figure 1: Use of Bezier curves to represent the area (a) enclosed
by a circle, (b) common to two circles, (c) inside one circle it
outside another. Control points are represented by filled dts,
and the curves by solid lines. Bzier curves provide a precise
and compact representation for areas commonly encountered
during localization.

and its solution technique, which is distributed, tramsitand most
importantly, capable of handling non-convex areas. Intotidn of
non-convex areas qualitatively changes the approach frewiqus
efforts, such as [6], that are limited to convex regions. 8oetent
work has examined how to derive node locations without theebe
fit of any landmarks [7, 18]. Theoretical analyses have éistedxl
estimation lower bounds for unit disk graph embeddings euith
landmarks [17]. The problem that Sextant tackles is morfecdit

A single point estimate may place the node at the center of the than a unit disk graph embedding since it admits non-conkeasa

field. Galstyan et al.'s approach represents an estimaesdas a
rectangle, while Sextant represents areas explicitly adlection
of polygons enclosed by Bézier curves.

In addition to node localization, there has been much work on
event tracking and localization. In collaborative Signadl anfor-
mation Processing [31], the path of moving objects are &ddk a
field of location aware sensors. The event location is ddrivem
the magnitude of the sensor reading, given the attenuatimtem
for the event. Acoustic Ranging in Sensor Networks [32] tesa
sound sources to a point location by triangulating agairsstaf
landmark sensors that detect the event. Brooks et al. [blgse a
distributed target tracking system using a publish-subsanodel.
Their work assumes that each sensor is equipped with a GRS for
calization and instead focuses on the use of pheromonengy urti-
network filtering and object tracking. Savvides et al. [1&)gose
an iterative event localization scheme based on measuternén
signal strength. Energy-Efficient Surveillance Systen] §88o de-
tects events in a location aware sensor field and routes keaoks
along a gradient set up by the controller. This approach s ce
tralized and relies on time synchronization. In the Cousttiger
system [11], event localization is performed using aceutiate of
arrival estimates and node localization is performed uat@ustic
ranging. This approach relies on tight time synchronizatie-
tween sensor nodes and requires each sensor to be in theafange
at least four other sensors in order to accurately localieesvent,
thus restricting the possibilities of dynamic configuratiof sen-
sor deployments. In contrast, Sextant can determine tlaidocof
events based on their signatures, without time synchrtiaiza

The most significant difference between our approach and-pre
ous work is that Sextant is practical. It derives this prop&om
its constraint model, which takes advantage of negativetcaints,

though the use of landmarks simplifies the problem space. As a
result, we have deployed and tested Sextant in practiceladed
show that it achieves high accuracy in a real world setting.

3. REPRESENTING REGIONS AND POSI-
TIONS

The scheme used to represent positions plays a criticalrdie
termining the functionality and efficiency of the localimat tech-
nigues. An ideal representation would accurately captedypes
of regions encountered during localization, permit an igffitma-
nipulation of regions in terms of CPU cycles, and take upelitt
space. A simple approach that permits efficient manipuiadiod
compact representation is to keep track of a single poinmessmt-
ing the system’s best estimate of the location of a node anteve
While simple, this approach fails to capture the local@aterror
or represent the range of positions where a node could beetbca
On the other end of the spectrum, it is possible to represgimms
using a finely-partitioned grid. While grids are versatilelacan
represent complex, non-convex shapes, they are not corapdct
do not permit efficient manipulation; intersection and wnaper-
ations with fine-grain grids take time proportional to theesof
the resulting area. What is needed is a representation dhagfe
ficiently represent and operate on the type of regions coriynon
encountered when working with wireless nodes.

Sextant useBeézier regionsthat is, polygons enclosed by knot-
ted Bézier curves, to represent sets of locations. B&zieres are
expressive and compact, and enable efficient region opesaiich
as union, intersection, and subtraction. Sextant encodesta-
trary region as a collection of polygons whose perimetezsvaade
of piecewise Bézier curves. A Bézier curve is a smoothrpatec



polynomial curve defined by four points, . . . , ps (calledcontrol
pointg passing througjpo, andps and tangent tp: —po andps —p2

at the end-points. Multiple curves can be knotted togethéorm
complex curves that can enclose a given region. Regiong-repr
sented by Bézier curves require only a fraction of the gi@nased
by grids and yet can be more complex and provide higher poecis

Figure 1(a) illustrates how Bézier curves can be used trerep
sent a circle precisely. Logically, four curves, each reprging a
quarter-arc of a circle, are joined at the endpoints. Eactecis
captured by the nearby set of color-coded control pointsdétine
it. Since each Bézier arc shares a control point with thé seg-
ment with which it is knotted, the points in common do not have
to be repeated. This enables Sextant to represent a peirfelet ¢
using only twelve control points. In practice, most regiaresen-
countered in practice are captured using fewer than thistytrol
points, where each control point is a point in 2-space thathm
stored in two machine words. Note also that Bézier curvasep-
resent arbitrary regions, including non-convex regionsl, r@gions
with holes and disconnected components. Bézier curvealsoea
natural choice when some errors are present in the measuteme
of the control points, as these errors are not magnified aflbeg
curve [21]. Note finally that collections of Bézier regioten rep-
resent any region, convex or concave, with and without haled
with a single connected component or multiple disconnected-
ponents.

Algorithms have been developed by the graphics community to
efficiently perform primitive operations, such as uniontemec-
tion and subtraction, on such regions [34]. While theseritlyos
are beyond the scope of this paper, they essentially cotivese
region-operations into operations involving just the cohpoints.
The result of intersecting and subtracting two circledistrated in
Figures 1(b) and 1(c) where the results is defined by six aeti/en
control points respectively. We build on these primitiveegtions
to provide two operations that we cakpandand contract The
result, AT, of expanding a regiod by a scalar is the region that
encloses all points within a distaneérom anypoint in A. The re-
sult of contracting a regior by a scalar, denoted byA ™, is the
set of points within- away fromall points inA. A*\ A (andA™)
are computed as the union (and intersection) of circlesdifisa:
centered at all points on the perimeter4f The control points for
the resulting regions are computed directly from the cdtoints
of A. Thus Bézier curves allow the representations of regians i
Sextant to be very expressive, compact, and yet efficiengéeo u

4. NODE LOCALIZATION

Sextant performs localization by solving a set of constsaiap-
resented as Bézier regions through geometric operatinrseach
node or eventd, Sextant ultimately producesstimated location
set denoted by 4, which represents the system’s best estimate of
the region inside whictd mustbe located.

Two kinds of constraints go into the computation of estirdate
location setsPositive constraintsre of the formA must be located
inside region Xwhere X can be any arbitrary Bézier regiddeg-
ative constraintsin contrast, are of the formA cannot be located
inside region Xfor a similarly generic Bézier region. For now let
us assume that there is a way to generate positive and reegativ
straints, as we shall describe in the next section.

Localization in Sextant starts with a bootstrap assumptiat
initializes the location estimates at the start of the ator. For
node localization, every node initially locates itselfi®ihside the
universel{ such thatt 4 — U. Over time,A uses the constraints it
learns to refine this estimate. Af learns a new positive constraint
of the formA must be inside region ¥ien A can infer that it must

be inside the regiof4 < £4 N X. Similarly if it learns the new
negative constraint of the fori cannot be inside region ¥en it
infers thatitis in the regiofa < £4 \ X. Notice that in updating
A’s estimate, we do not assume th¥tneeds to be convex and
indeed it usually is not.

The rate of convergence of a node’s estimated location s&t to
very small region is a function of the size of the regidtsand the
number of different constraints in the system. If the regorin
a positive constraint is small, then each intersection atpmr re-
duces the estimate to one at most as biglaand usually smaller,
thus leading to rapid convergence. In the negative comstcase,
the larger theX, the larger the region subtracted away frémand
the faster the convergence. When all useful informationkwesn
incorporated int& 4 and further information from the network can-
not be used to refine A's position further, the algorithm tieates
and reports 4.

In the presence of large numbers of constraints, there iska ri
of ending up with an over-constrained system. If constsaare
chosen to be conservative, that is, in a manner such thattiey
never be at odds with the underlying physical reality, théywot
lead to an over-constrained system. In practice, howeveretis a
fundamental tradeoff between convergence rate and aggulac
termined by the level of conservatism (or conversely, thellef
aggressiveness) used when extracting constraints. Owenlser-
vative constraints lead to slow convergence, while aggyelysex-
tracting constraints from the physical layer increasevemence
rate at the risk of overconstraining some nodes and congpatin
defunct €4 = 0) location estimate for some nodes. The next sec-
tion describes how Sextant finds a medium between these two ex
tremes.

5. CONSTRAINT EXTRACTION

Two types of localization constraints naturally manifdstrh-
selves in sensor network#bsolute constraintexplicitly provide
coordinates (or regions) inside which the sensor must la. if~
stance, GPS provides the constraint that the node equipfibd w
the receivemust be located inside a circle of radiuscentered
at its GPS coordinatewheree represents the GPS error. We call
nodes with access to such constralatedmark nodesln contrast,
relative constraintdimit the distance between a node and another
node or event whose position itself is undetermined. Atisaton-
straints are hard to come by since very few sensors in a nletwor
will be equipped with power consuming GPS devices. Hence we
focus on cheaply generating and utilizing relative cornstsafrom
hardware already present on the nodes.

One source of relative constraints is the wireless radidsare
present on all sensor nodes. In this section, we limit oueselo
mere connectivity information between nodes, a booleamevadp-
resenting whether a nod¢ can receive a threshold percentage of
transmissions from nodB or not. We do not assume symmetry in
connectivity i.e.A can hearB doesnotimply B can hearA. Under
these assumptions, a naive, but intuitive constrainf id: hearsB
then A must be within transmission range Bf On the other hand,
if A doesn’t heaB then A must be outside transmission range of
B. In practice, this approach suffers from three criticaljbemns.
First, thetransmission coverage regidthe set of locations where
transmissions from the node can be heard) is rarely, if ev@rcu-
lar disc with a fixed transmission range. Second, the trassion
coverage region may contain holes. A node right next to duestr
mitting node may not be able to hear it while one further away i
the same direction can. And third, there should be a way t@aeixt
useful constraints fronB’s connectivity information even if it is
not landmark node. We address these problems in turn.
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Figure 2: Wireless transmission coverage region of a MICA2
mote, shown at center. Area is non-convex with holes. The bex
plot on the left shows the distribution of inter-node distarces
for wireless one-hop neighbors. The box-plot on the right
shows the inter-node distance distribution for non-neighlrs.
The substantial overlap motivates conservatively extradhg
two separate constraints based on and R.

We first examine the irregularities encountered in practiith
wireless transmission zones. Much past work assumes aisimpl
tic connectivity model based on a single radius determinethb
reception threshold; nodes that receive direct transorissare as-
sumed to be within a circular area of radils while nodes that do

® PB's actual position (unknown to B)
I_ _ | B's actual coverage region
|:| B's estinmated | ocation set

B‘s
[ Jes

Figure 3: lllustration of key terms. Node B has estimated lo-
cation set £g. It can determine its maximal wireless coverage
region M% by taking the union of all circles of radius R cen-
tered in £z, and its assured wireless coverage region A% by
taking the intersection of circles of radiusr.

assured wirel ess coverage region

maxi mal wirel ess coverage region

tered on the node. Yet most nodes will not be landmark nodes,

not are assumed to be outside. We set up a MICA-2 mote at theand there may well be significant errors in their positionnestes.

center of a 7x7 grid and monitored the connectivity of theiltes
ing system to determine if this simplistic approach coulcLiaately
capture transmission areas encountered in practice. d~&ysinows
the irregularity of transmission ranges and the presentelet in
radio coverage encountered in practice with MICA-2 moteke T
box-plots show the distribution of the distances betweestoop
neighbor nodes as well as nodes that cannot receive digets-tr
missions from each other. The overlap evident in the bogsplo
indicates that a unit-disk embedding, based on a singleisa
unlikely to accurately capture physical reality.

Sextant extracts conservative constraints even in thepcesof
nonuniform transmission regions by using two separatd.rdtli
extracts positive constraints using a large radiusAs shown in
Figure 2, if A can receiveB’s transmissions theml must be at
most R away from B since no hosts separated by more than
can receive each others transmissions. Similarly, Sextanacts
negative constraints using a small radiuslf node A cannot re-
ceive B’'s transmissions, then it cannot be less thaway fromB
where0 < r < R. The first case defines a positive constraint
circle of radiusR centered a3 while the second defines a nega-
tive constraint circle of radius at B. Together, they sandwich the
boundary of an irregular coverage region such that theeerggion
is contained inside the large circle and the portion of tiggorein-
side the small circle is convex. This allows for holes andeoth
irregularities, such as angular variance in range, to béirazh to
the annulus between the two circles. In the general dasadr
may be different for each node, and may change over time with d
minishing energy reserves. Sextant requires only thatengiode
be aware of its own and R, though in practice we use a uniform
set of values for a given class of wireless radio hardware.

When a node’s absolute location is known, extracting cairgs
is straightforward: two circles of radii and R can simply be cen-

Nevertheless, we would like Sextant to be able to extracttcaimts
from nodes whose positions are approximate. Sextant pesftris
extraction in the following, sound manner. In the positiase, ifB
lies inside regiort 5, then a node that receives transmissions from
B must be located inside the regiovty. MY is defined as the
set of all points withink from some point i€ 5. We callAM Y’ the
maximal wireless coverage regioh B, which is represented by the
light gray region in Figure 3. Geometrically, this is theambof all
circles of radiusR centered at points ifiz, but it can be computed
efficiently if the boundary of 5 is piecewise Bézier by expanding
&Ep by R as described in Section 3. In the negative case wHere
cannot receive transmissions frdsy A must lie outside the region
AY, defined as those points whose distance from all poing&sin
is at-mostr. We call A% theassured wireless coverage regioh
B, represented by the diagonally stroked region in Figuressbé:
fore, this is geometrically the intersection of all circl#fsradiusr
centered insid€z but can be computed efficiently from the Bézier
control points by contractingz by r.

Figure 4(a) depicts the result of node localization usingnee-
tivity constraints gleaned from wireless radios in a matsdd ex-
periment. The light squares represent the actual locaticheo
node and the dark boundaries represent each node’s edtifnate
cation set. The radio range for the nodes is about a fourttvifid
of the figure. The three nodes with small circles for theimeated
location set are the only landmark nodes. Interestinglgepkfor
the landmark nodes, all other location estimates are nawesp
demonstrating the usefulness of the Sextant approachar8exdn
even localize nodes, such as the top-right corner node,hndrie
multiple hops from landmarks, with high accuracy.

While the preceding discussion examined how to extract con-
servative constraints from simple connectivity inforroati Sex-
tant can extract constraints from more sophisticated eésehard-



ware if available. For instance, if the wireless radios mevan
estimate of signal strength, then the above analysis cappeated
such that nodes receiving transmissions at streragté constrained
to lie between some; and R; away from the transmitting node.
Such rings can then be combined through union and inteosecti
to generate the regions corresponding to the maximal anoexbss
wireless coverage region for a given signal strength. lfen§ar-
rival information is available then the underlying regienshaped
like a wedge, or pie-slice, instead of rings.

If the nodes are equipped with sensors, then additionaticints
can be extracted as events occur. Sextant models the sanger r
with two parameters; and.S, defined as the distance within which
all events are sensed and the distance beyond wit@vents are
sensed, respectively. Such constraints can be used t@zkeaknts
whose positions are not known, as described in the nexosedr
to refine node location estimates from events whose locatoe
known, as described in Section 7.

6. EVENT LOCALIZATION

The unified localization framework that Sextant provides ba
used for both node and event localization. The approach fased
event localization is analogous to that used for estimatiade
positions. For event localization, we assume that each f®de
equipped with a sensor that can detect events within a rammge m
eled bys and S, as described in the preceding section. As with
the transmission coverage region, this model allows fosisgn
regions with irregular boundaries and holes. While Sextamt
extract complex constraints for sophisticated sensotsrétarn a
range of values when an event is detected, we limit this aisty
sensors that return a boolean sensed/not-sensed valuenfiics
ity. Consider a sensdB with estimated location sélz. We define
two coverage areas, tieaximal sensor coverage area 3 which
is the region outside of which no events can be senseB.bys
before this is the union of all circles of radigscentered i€z,
but can be computed efficiently using Bézier expansion.oSgc
we define theassured sensor coverage aret; which is the re-
gion inside which events must necessarily be sensefl bpd can
computed by effectively taking the intersection of all tscof ra-
dius s centered insid€s. If an event is detected, then some set of
sensord” detect the event while the remaining set of sengbdo
not. We then conclude that the event must have occurreckitiséel
region that is common to all the maximal sensor coveragesdoga
the sensors that detected the event and outside the asssat s
coverage areas of the sensors that didn’t detect the evemafy,
the estimated positiol for an event can be specified as:

v= M5\ U A5

Ber’ Be®©

@)

Equation 1 follows from a straightforward extension of thexS
tant approach to event detection. Note that, with this d&dimithe
probability of an event having occurred outsidefs zero, and
equal for all points internal to.

While simple, the approach presented in Equation 1 doesket t
into account the varying degrees of accuracy with which aage
timate their own position. A node whose position estimateies
a high degree of uncertainty should not affect event loatitn to
the same degree as a landmark node. ldeally, the eventzacali
tion algorithm would return a region explicitly tagged witte rel-
ative probabilities, representing the system’s confidénaghere
the event happened.

To that effect, we perform a grid-decomposition ¥rand asso-
ciate a probability valué(G;) with each grid cell;.

P(Gi) =~ <H P(gi|DB)> <H P(gi|ﬁDB)>

Bel’ Be®©

WhereP(G;|Dg) represents the conditional probability that the
event happened if; given senso3 detected it andP(G;|-Dxg)
is the same give did not detect ity is chosen to normalize the
volume under the surface defined B\(G;) to 1. P(G;|Dg) and
P(G;|-Dg) can be related t&’(Dg|G;) and P(—-Dg|G;) using
Bayes's theorem as follows.

P(Dgp|G:) x |G
>, P(DslG;) x |G|

P(—Dg|Gi) x |G
>_; P(=DslG;) x |G;|

Where| - | calculates the area of a region. Finally, we deter-
mine P(Dg|G;) by calculating the relative size of the region inside
&g that B needs to be inside of to detect an eventjin This is
given by P(Dg|G;) = |Es N MY |/|E5| where MY is the set
of all points at-mostS away fromsomepoint in G;, calculated by
effectively taking the union of all circles of radius centered in
G:i*. P(—Dg|G:) can similarly be calculated aB(—=Dp|G;) =
|5 \ A% |/|Er| where A% is the set of all points at-mostaway
from all points inG;, calculated by effectively taking the intersec-
tion of all circles of radius centered irG;.

We call the surfaces defined B(G;|Dg) and P(G;|—~Dg) the
positive sensing contributioof B andnegative sensing contribu-
tion of B respectively; these are shown in Figures 4(b) and 4(c).
Each small square in the figure representg; and the function
value is represented by varying the shade of the square vhitte w
representing 0 and the darkest shade representing the omaxim
value. The positive sensing contribution, comprised okpddark
areas in a sea of white) tends to increase the probability ef/ant
taking place near the peak. In contrast, the negative sgesin-
tribution is comprised of troughs (white depressions in atgau
of dark) that decrease the probability that an event hagpenie
recess by increasing the probability everywhere else. €&laive
heights of the peaks and troughs are a function of the antigigui
node positions. If the node localization is highly accuthtn the
peaks are higher, troughs are deeper and the slopes in itesgree
steeper. Figure 4(d) represefit§g; ), the system’s best estimate of
the region in which the event happened, annotated with pittba
ties. The peak of the surface is quite close to the event,itsed the
region of ambiguity is very small even thoudh the node closest
to the event, has a large ambiguity in its position.

P(Gi|Ds) =

P(Gi|-Ds)

7. FEEDBACK

Event localization provides additional opportunities tdract
constraints for node localization. We make the assumptia t
nodesB and C can tell that they both detected the same event.
This detection can be performed in the frequency domairutitro
event signatures, say, when working with acoustic sengorsit
can be performed in the time domain by comparing clock vaifues
nodes have access to synchronized clock hardware. If twesi®d
and C that know their locations with some ambiguity both detect
the same event then they can infer that they must be withisirsgn
range$ of the event, and thus withixS of each other, and within
S of V.

!Since a straight line is a Bézier cung, can be expanded by as
per Section 3
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Following this intuition, node positions can be refined biran
ducing calibration events into the network. In the case wheanet-
work administrator can control the positions of events t&eduses
circles with radiis and .S centered at the absolute event location to
draw further constraints on node positions. This straayitrd
refinement is similar to the calibration approach describgdO].
Surprisingly, however, events can be used to refine nod¢i@usi
even when the event location is not known with certainty. dn r
sponse to an event, Sextant determines the regiomwhich the
event happened using the algorithm described in the pre\deo-
tion. It then computes the regionst” and . AY that are defined
as points at-mos$ ands away fromsomeandall points inV, re-
spectively. As mentioned earlier, these regions are coedaphy
effectively combining all circles of radiu§ and s centered inV
through union and intersection, respectively. If a ndtidetected
the event that was located at some point inditiéghen B must be
within S from that point. Hence, for all nodeB < T that de-
tected the event, Sextant introduces a new positive conistheat
B must be insideMY. Similarly, if B did not detect the event,
then it cannot be withis of the event location and thus cannot be
at a point that is less thanfrom all points inV. Therefore for all
nodesB € © that did not detect the event Sextant introduces a hew
negative constraint tha® cannot be insided”.

Note that while these constraints themselves are conseryat
they may magnify errors already in the system. If, for exampl

Any time B’s value of £ changes,B recomputesM ) and
AY as described earlier. It tags the former as a positive cainstr
and the latter as a negative constraint and attaches a nmicedtyp
increasing version number, network time-to-live (TTL) amda-
lidity time period to each constraint. The version numbenssd
to propagate new information. The TTL is used to limit how far
each packet is disseminated into the network. Since thaiymsi
constraints are useful only to nodes that can receive dirans-
missions fromB its TTL is set to 1. The negative constraint is
useful for nodes more than one-hop frdsy however, in practice,
only nodes at-most 3-4 hops benefit from the data. The walidit
riod is used to cull unsatisfiable constraints after a pecbtime
and is based o®’s mobility rate. B then transmits these two con-
straints after waiting for a small random interval of timeattow
for sudden surges of incoming constraint traffic to modsfg local
estimates before transmissiai.may transmit the constraint mul-
tiple times to account for packet loss. It also retransrétapdated
constraints at the point of expiry of its last transmission.

Any node A that receives more than some threshold percentage
of B’s direct transmissions first removes all copies4}} from &
and all old copies of\% from Q where old is defined as a copy
with a lower version number. It then adddy from the received
packet to2 and retransmits the negative wireless constraint in the
packet after decrementing the associated TTL, droppingabket
if the TTL reaches 0. If a nod€' receivesB’s forwarded transmis-

lies slightly outside€ s due to errors introduced by a non-conservativesion, it checks if somg1y exists inQ. If not, ¢ then removes any

choice ofr, then it is possible that the system localizes an event
to V even when it happened slightly outsitfe As a result both
MY, AY are slightly off such that when intersected or subtracted
by B, £g shrinks further, causing to lie further away from the
boundary than before the event. Such constraints obtaiadded-
back magnify the tradeoff between accuracy and constratisfis
ability discussed earlier.

8. NETWORK PROTOCOL

The Sextant localization framework operates in a fullyritisted
fashion without central coordination. Each Sextant nsdecally
keeps track of its estimated location §et, the set of positive con-
straintsQ2 and negative constraints learned over time. All con-
straints inQ2 and ® refer to a corresponding regiok and carry a
version number and validity time period. At any time, theainant
holds thatfs = N x, cq Xi \ Ux, ca Xi-

existing copies of4% from ® and adds thed)y from the received

packet to®. C then retransmits the packet after decrementing the

TTL unless the TTL hits 0. Boti andC expire the entries in their

Q, ® once the validity period indicates that the constraintadest
When B detects an event, it waits for a small random interval

before sending out an event-report request with the evegniasi

ture and an initial TTL, unless it receives an event-repequest

with the same signature while waiting. The event-reportiests

are forwarded immediately by other nodes until the TTL eagir

Node A, upon receiving the request, responds with an event-report

response message addresseB wontaining€ and eithetM?, if

it detected the event 043 if it did not detect the event collects

all such responses and combines them to genétate described

earlier. For the feedback part of the protocBlthen creates two

constraints from the areast” and.AY and attaches the event sig-

nature, a TTL and a large validity period before broadcagstin

Once nodeA receives and processes the feedback packet, it adds



MY to Q or AV to ® depending on whether it sett$ or A5 100
in the event-response for that event. It then forwards thddack 90k
packet unless the TTL expires. In the mean titBecan calculate
the surfaceP(G;) and notify the user by sending it to a predeter-
mined node.

Since each node keeps track of local information, the né¢wor
load and memory requirements in Sextantrait depend on the
number of nodes. Instead, the network load and memory requir
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ments are proportional to the local density of nodes. The/ort swp X ,’D‘ 1
load also depends on the validity period of constraints chvidie- wl [ 7 ]
pends on the mobility of the network. For highly mobile netks) e

constraint validity periods are low, causing nodes to coraily or coxtant —r— |
broadcast updated position estimates. For static netwookeever, 10 7 Posiive-constraints ~x~ 1
validity periods approach infinity causing almost zero rettraf- ¥ ‘ ‘ ‘ ‘ ‘ ,_Trianguiation -~
fic after Sextant converges to its node localization sofut@onse- 0 0 20 3 40 50 60 70 80 90 100

. % Landmark Nodes
quently, Sextant scales well to large static networks.
Figure 5: Percentage of nodes accurately estimating theirgsi-
9. IMPLEMENTATION tion as a function of percentage of landmark nodes.

We have implemented two instances of Sextant. The first is a
fully distributed implementation that runs on laptops aridAP . . . -
class devices such as HP Jornada palmtops. The system is smalVith absolute constraints. Due to the static position ofesodhe
and compact; it consists of only 710 nonblank lines of Jaweco validity period of constraln.ts was set to infinity. The omlmalge
and relies on the Bézier curve library supplied with theaJRun- of the TTL parameter TTL in the network protocol was experime
time Environment version 1.2. The Sextant implementatisesu  (@lly determinedtobe 3. ) _
Sun’s JRE on laptops and HP's ChaiVM on Jornadas with 802.11b  SOome of the results in this section are computed through sim-
wireless cards operating in ad hoc mode to perform nodeitacal ulations. The simulation parameters for transmission amsar

tion. The second instance of Sextant was implemented forAMIC ~ F@nges were set to those observed in the physical experiBien-
2 motes. It consists of a TinyOS module, written in 209 linés o lated nodes were placed randomly in a field with dimensiigem>x

NesC code, that collects network connectivity and sengorrima- 366cm.

tion and forwards it to a central controller node that perfeithe In a long-term deployment, key system parameters, sucland
node and event localization. Our implementation takes tless R, might change. Sextant does not make any strong assumptions
100 ms. per node on average to perform node localization on a&Pout the invariance of such parameters and can easily aocom
2.7 GHz Pentium 4 processor. For event localization, thbaii- date dynamic changes. For instance, nodes can measurewimeir

ity distributions of each node’s positive and negative dbotions energy levels and adjust the ranges they broadcast to teigin-n

are pre-computed and cached once node localization is eteppl bors. Nevertheless, we measured the changes in the traismis

adding a 1-2 second latency before the system can perfornt eve @nge of several motes over the course of four days and difiiabot

localization. Using the cached data, the system can laxalients any variance over this time span in wireless range for a tiofelof
in just a couple of milliseconds. 80% packet reception. This is in line with other measurem3i],

which found that fluctuations were confined to an annulus,ateat]
accurately by the and R parameters.

10. EVALUATION _
In this section, we demonstrate that Sextant is effectiveuh 10.2 Experiments

both extensive simulations as well as physical experimekie We compare the effectiveness of Sextant against previaxsly
show that aggressively harvesting constraints from thelegs ra- plored techniques: triangulation, single-hop and pasitienstraints.
dio and sensors leads to low median error rates and accorztk | Triangulation is an approach similar to [20, 27] where a nluzde
ization using few landmark nodes. We provide insights fawoek cates itself to the centroid of other nodes that it hears fi®imgle-
designers to select optimal parameters for Sextant bassdmn hop is an approach similar to [19] where nodes only use cainssr
lation and experimental results. learned from their neighbors and do not propagate themitrans
tively. Positive-constraints only makes use of the posithon-
10.1 SetUp straints in the system and is similar to [6]. In order to corepa

We implemented Sextant on laptops and PDA-class devicégmefi accuracy between the regions returned by Sextant and tié- poi
with 802.11b modems and MICA-2 motes equipped with 900MHz locations returned by other schemes we use a Monté Caite tec
wireless radios and sensor boards with light sensors. nsii- nigue to pick a point-location inside the Sextant regiora thin-
tion, we report on results from a deployment of 50 motes. tteor imizes the average error to other points inside the regiamthEr,
to create a complex network topology, transmission powes sed we limit Sextant to use only the constraints gleaned fromatine-

to 1.5%. This yields an experimentally determined covermga less radios. Constraints derived from sensors and feedtrackal-
where the transmission range varies betwéeom and183cm. uated later.

We setr to 121cm, corresponding to the 3rd percentile, aRdo Figure 5 plots simulation results for the percent of noded th
183cm, corresponding to the 97th percentile in Figure 2. Thesen can localize themselves accurately versus the percenfagmles

ing range for our hardware was determined toShe- s = 61cm. with access to expensive absolute constraints. The graplorde

49 sensors were laid out in7ax 7 grid pattern with an inter-node  strates the effectiveness of Sextant; specifically, wherertiwan
separation of 61cm, one additional sensor acted as an guuiess 20% of the nodes are landmarks, more than 90% of the nodes can

30% percentage of the nodes were randomly chosen to be seededliscover their location accurately. Figure 6 plots the eixpental
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Figure 6: Cumulative number of nodes estimating their posi-
tion as a function of the positional error. Negative informaion
and transitive dissemination improve location estimatesignif-
icantly.
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Figure 7: Histogram of error distribution of Sextant and other
methods.

results along a different axis. The experimental resultitpizely
confirms the simulation result and demonstrates that Seietaf-
fective in a real setting. These graphs also quantify thesfitsn
of multi-hop dissemination of location information as wa#l the
benefits of using negative information to supplement canss.
Single-hop schemes can determine position for a node ongnwh
it is within range of a node with absolute constraints. Saniyl
positive-constraint schemes are not competitive since f&ié to
take full advantage of all available constraints.
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Figure 8: Cumulative percentage of events localized a funizin
of the localization error. Negative information and probability
computations improve location estimates significantly.
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Figure 9: Sextant detects events with low error and its acclacy
improves with more sensors

ing that Sextant effectively detects and locates eventsHigtser
degree of accuracy than triangulation. In our physical erpent,
Sextant localized 90% of the events to within 6cm (10% of 8). |
addition Sextant localizes all events to within 9cm wheteasgu-
lation based schemes have a maximum error on 60cm. Sexant’s
curacy is partly due to negative information extracted ftbmsen-
sors, partly due to the constraint setup that Sextant sahatsad
of single hop triangulation and partly due to the use of pbilliges

to discard unlikely grid cells. This accuracy is furtherdamced
by simulation results in Figure 9, where Sextant consiftenit-
performs the triangulation scheme as sensor density isese&ex-

Figure 7 shows that in a physical deployment, Sextant’s fise o tant has a low mean error and accurately pin-points eveatitots;

negative information provides higher accuracy than othpr@aches.
Sextant locates 61% of the total located nodes to withis R of
their true position, whereas schemes based on positivetreants,
single-hop and triangulation achieve comparable accuimaynly

further, its accuracy increases as the number of sensoeaBe.

In Figure 10, we experimentally compare the accuracy of node
localization in Sextant with and without the use of feedback-
straints learned from the sensors. The figure shows thaticwlali

48%, 41% and 40% of the nodes, respectively. The median Sex-positive and negative constraints serve to decrease tbesdrr

tant error is 30% ofR while the median error for the other ap-
proaches is significantly higher.

Next, we compare the event localization component of Séxtan
For comparison we implemented a simple triangulation sehem
that triangulates the location of events to the centroidaafes de-
tecting the event. Figure 8 plots physical experiment tesow-

node localization significantly with very little magnifidar, if any,

in the errors of most nodes. In our experiment, the average er

with feedback was 1.6cm while without feedback it was 12.2cm
Figure 11 shows the performance of the system as node trans-

mission power and consequently coverage area is increslgisal.

one-hop triangulation, increasing the coverage areaaseethe
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Figure 11: Percentage of nodes accurately determining thei
position vs. coverage area of each node

number of one-hop landmark nodes a node can detect. Beyond
a threshold of landmarks, this introduces an averagingeéiad
eventually all non-landmark nodes estimate their positiobe at
the centroid of all landmark nodes. With Sextant , however, a
the coverage area grows, so do the assured wireless corme
therefore balancing the averaging effect by subtractimgelaareas
of assured coverage. As a result, Sextant is able to maiitain
performance as transmission area increases. Only whemnag@ve
area exceeds the field size do the non-landmark nodes lose the
ability to differentiate their position and only then dobas system
collapse. Overall, Sextant is effective across a wide rafigens-
mission powers.

Figure 12 shows the density of landmark nodes required tieeeh
a target level of node localization for a given density ofssen

nodes. The graph shows a flat trend suggesting that the number

of expensive landmark nodes required is independent of uhe n
ber of sensor nodes in the system and depends only on theaagcur
desired of the system. This confirms the intuition that, rélgss of
the number of inter-dependent constraints, only a fixed reurob
absolute constraints are needed to collapse and solve st aint
system.

The dependence of the event localization component of Sex-
tant on the sensing range of the sensors is explored in Fiddire
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Figure 12: Number of landmark nodes required to maintain
target location discovery as the average degrg@umber of wire-
less neighbors) increases.
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Figure 13: Sextant is effective over a wide range of sensor pa
rameters

As with wireless ranges, Sextant avoids the averaging teffext
triangulation schemes suffer from. With larger sensingyean the
broader peaks in the positive sensing contribution graphcan-
celed by the broader troughs in the negative sensing catitib
graph. Sextant succumbs to the averaging effect only when th
sensors can sense almost the entire field, thus demongttiaginit

is effective over a wide range of sensing ranges.

Sextant has a small memory footprint and introduces lite n
work overhead. Estimated location sets in our experimeritajly
comprised of ten Bézier segments, which consumed 240 loytes
local storage per node. The total local memory requirenrentr
implementation including maximal and assured coveragmmeg
neighbor sets etc. was less than 2 kB per node. The number of
bytes transmitted by a node was around 80 kB over the course of
the experiment, corresponding to about 350 (re)transarissof
coverage regions.

11. CONCLUSIONS

In this paper, we presented Sextant, a unified frameworkdden
and event localization. Sextant is a comprehensive systathde-
rives its effectiveness from integrating negative as welpasitive
information, representing areas precisely using Bézieres, tran-
sitively disseminating constraints in the presence of taagy,



and solving the resulting system of constraints using aibiged
algorithm. The resulting system is capable of providingoatality
distributions for event locations, and non-convex areaneges for
node locations to higher level applications. We have imgleted
and deployed Sextant on a range of hardware, and demouisitsate
accuracy and practicality via simulations and physicakexpents.
Overall, Sextant is comprehensive, principled, and a¢eura

The explicit representation of potential node and everdtioos
as non-convex areas opens up new opportunities. Applitgatio
which tend to rely on point-estimates, can extract much niore
formation from the localization layer by using the Béziegions
and probability distributions provided by Sextant . And tise of a
unified framework for node and event localization can helprione
the fidelity of both localization problems.
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