
RadioJockey: Mining Program Execution
to Optimize Cellular Radio Usage

Pavan Kumar, Ranjita Bhagwan, Saikat Guha,

Vishnu Navda, Ramachandran Ramjee,

Dushyant Arora, Venkat Padmanabhan, George Varghese

Microsoft Research India

Problem Context: Overheads in
Cellular Radio Usage

IDLE CELL_FACH CELL_DCH

Wakeup

Timeout T1 Timeout T2

State transitions based on:
(1) traffic volume
(2) operator chosen timers

Tx/Rx

Tx/Rx

2

0

50

100

150

200

250

300

350

0 5 10 15 20 25 30

A
vg

 C
u

rr
e

n
t

in
 m

A

Time in Seconds

IDLE

Tx/Rx

Ramp-up IDLE

T1

Power Consumption

Radio Tail
(15-20J)

T2

Signaling

Transition # control
messages

IDLE  DCH 30

DCH  IDLE 2

Latency

Transition Secs

IDLE  DCH 2

DCH  IDLE 20

Existing Radio-tail Optimizations

1. Amortize tail overhead by
shaping traffic

a) TailEnder [IMC 09]

2. Adapt tail using Fast-dormancy

a) Based on application hints –

 TOP [ICNP 10]

b) Based on client-side idle timers –

 Falaki et al. [IMC 10]

time

prefetching batching

Existing Radio-tail Optimizations

1. Amortize tail overhead by
shaping traffic

a) TailEnder [IMC 09]

2. Adapt tail using Fast-dormancy

a) Based on application hints –

 TOP [ICNP 10]

b) Based on client-side idle timers –

 Falaki et al. [IMC 10]

time

prefetching batching
Requires app changes

Requires app changes +
developer awareness

Commonly used in many
smartphones (3-5 sec timers)

Fast Dormancy Woes

“Apple upset several operators last year when it implemented firmware 3.0
on the iPhone with a fast dormancy feature that prematurely requested a
network release only to follow on with a request to connect back to the
network or by a request to re-establish a connection with the network …”
What's really causing the capacity crunch? - FierceWireless

Disproportionate increase in signaling traffic caused due to increase in use of fast-dormancy

http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch
http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch
http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch
http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch

Problem #1: Chatty Background Apps

• No distinctive knee

• High mispredictions for fixed inactivity timer

CDF of inter-packet times
for Outlook application
running in background

Problem #2: Varying Network Conditions

• Signal quality variations and handoffs cause
sudden latency spikes

• Aggressive timers frequently misfire

CDF of inter-packet times
for Lync application for
different network
conditions

Objectives
• Design a fast-dormancy policy for long-

standing background apps which

– Achieves energy savings

– Without increasing signaling overhead

– Without requiring app modifications

When to Invoke Fast Dormancy?

time

App
traffic

Energy savings when 𝑡𝑠 ≥ 3 𝑠𝑒𝑐 and fast dormancy
is invoked immediately after end of session

DCH

fast dormancy

Energy
Profile

End of session - EOS

 ≥ 𝑡𝑠

Packets within
session

DCH DCH
IDLE

Example 1 Example 2

Problem: predict end of session (or onset of
network inactivity)

Idea: exploit unique application characteristics
 (if any) at end of sessions
Typical operations performed:

• UI element update

• Memory allocation or cleanup

• Processing received data

System calls invoked by an app can provide insights
into the operations being performed

Time
Network

traffic

System call
trace

W
aitFo

rSin
gleO

b
jectEx ()

C
lo

seH
an

d
le()

R
eleaseM

u
tex ()

D
isp

atch
M

essageW
()

F
reeL

ib
rary

()

 > 𝑡𝑠
 secs

…
()

…
()

packet in
session 2

Packets in
Session 1

…
()

 𝑡𝑤

EOS
data-item

ACTIVE
data-item

 𝑡𝑤

• Technique: Supervised learning using C5.0 decision trees
• Data item: system calls observed immediately after a packet
 (encoded as bit-vector)
• Label: ACTIVE or EOS

P1 P2 P3

 𝑡𝑤

C
lo

seH
an

d
le()

F
reeL

ib
rary

()

…
()

…
()

…
()

EOS
data-item

Predicting onset of network inactivity

Decision tree example

Rules:
(DispatchMessage & ! send) => EOS
! DispathcMessage => ACTIVE
(DispatchMessage & send) => ACTIVE

DispatchMessage

send ACTIVE

EOS ACTIVE

0 1

0 1

Application: gnotify

RadioJockey System

13

System Calls
 +
Network Traffic

Training
using C5.0 traces

Offline learning

Runtime Engine

App System Calls
 +
Packet timestamps

Tree-
matching
(run-time)

Cellular Radio Interface

Fast Dormancy

App 1 Rules App k Rules

Evaluation Overview

1. Trace driven simulations on traces from 14
applications (Windows and Android platform) on
3G network
– Feature set evaluation for training

– variable workloads and network characteristics

– 20-40% energy savings and 1-4% increase in signaling
over 3 sec idle timer

2. Runtime evaluation on 3 concurrent background
applications on Windows

Energy drain and signaling overhead

Energy consumed normalized to a 3-second idle timer approach

Signaling overhead normalized to a 3-second idle timer approach

Runtime Evaluation with Concurrent
Background Applications

• 22-24% energy savings at a cost of 4-7 % signaling overhead

• Marginal increase in signaling due to variance in packet timestamps

Summary

• RadioJockey predicts onset of network
inactivity using system calls invoked by
background apps

• Requires no modifications to existing apps –
legacy, native and managed apps

• Achieves energy savings of 20-40% with
marginal increase in signaling overhead

Backup Slides

Predict using only network features

• Features : IP, ports, TCP flags, HTTP headers

• Performance:

– Energy savings only for simple apps

– No good rules for complex apps(Outlook and Lync)

– Cannot handle apps that use encryption

Varying networks and workloads

Energy consumed normalized to a 3-second idle timer approach

Feature Space Exploration and
Choice of Window Size

• PrevState feature captures temporal state information

• Adding PrevState into learning boosted savings

• 𝑡𝑤of 0.5 seconds sufficient for most applications

Understanding Fast Dormancy Feature

• Client controlled

• Tail energy reduced to ~1.5J

• Without network support

– RRC connection torn down
– DCH/FACH to IDLE
– Ramp-up costs up to 30 msgs

• With network support
– Ramp-down to PCH instead of IDLE
– Ramp-up to DCH incurs 12 msgs

