RadioJockey: Mining Program Execution
to Optimize Cellular Radio Usage

Pavan Kumar, Ranjita Bhagwan, Saikat Guha,
Vishnu Navda, Ramachandran Ramjee,
Dushyant Arora, Venkat Padmanabhan, George Varghese

Microsoft Research India

Problem Context: Overheads in
Cellular Radio Usage

Wakeup Tx/Rx
State transitions based on: TX/RX
(1) traffic volume
(2) operator chosen timers
Timeout T2 Tlmeout T1
/ Power Consumption Signaling

350 Transition # control
T 300 - D/Rx J| T2 A messages

204 | AN T 1 IDLE = DCH 30

@ 200 - DCH > IDLE 2

3 150 - Radio Taill——>

go 100 4 (15-20)) Latency

< PEEREEEEN L "
>0 IDLE | Ramp-up IDLE m
0 - I I I I I IDLE - DCH 2

0 5 10 15 20 25 30
\ Time in Seconds DCH - IDLE 20 /

Existing Radio-tail Optimizations

1. Amortize tail overhead by “I I “I I

shaping traffic —
a) TailEnder [IMC 09] II II |

prefetching batching

2. Adapt tail using Fast-dormancy

350

a) Based on application hints— g el

£ 250 - 0
TOP [ICNP 10] fﬁm

b) Based on client-side idle timers - < . |
Falaki et al. [IMC 10] " memseonds

Existing Radio-tail Optimizations

1. Amortize tail overhead by

shaping traffic
a) TailEnder [IMC 09]

Requires app changes

2. Adapt tail using Fast-dormancy

350

a) Based on application hints — < 00

. f 250 -
Requires app changes + = o0
developer awareness 3 150 -

2 100 -

b) Based on client-side idle timers - < . |

Commonly used in many

smartphones (3-5 sec timers)

prefetching

II II time

batching

N
e

T T T T
0 5 10 15 20
Time in Seconds

T
25

30

145,000,000
140,000,000
135,000,000
130,000,000
125,000,000
120,000,000
115,000,000
110,000,000
105,000,000
100,000,000
95,000,000
90,000,000
85,000,000
80,000,000
75,000,000
70,000,000
65,000,000
60,000,000
55,000,000
50,000,000
45,000,000

L

Fast Dormancy Woes

Data growth rate
in period:
65%

Signaling growth
rate in period:
177%

Dec-2008 Jan-2010 Feb-2010 Mar-2010 Apr-2010 May-2010 Jun-2010 Jul-2010
= HSDPA data volume {IMAC - d) at lub - RNC_608 == RAB attempts PS5 - RNC_G16

Data and signaling traffic by terminal type,
measured November 2010

100

Fast dormancy
overrides
Cell_PCH

Dor |H:ca =1%

Others — 19%

80
Dongles — 60%
60

Blackberry — 26%

40

Others — 12% -
Blackberry — 2%

Fast dormancy on

HTC Android - 32%
Fast dormancy on

Percentage of total amount

20 HTC Android=28% :-
iPhone — 18%
0

iPhone — 22%
Fast dormancy off

Data traffic Signaling

traffic

\ Source: Nokia Siemens Networks, 2010.

~,

J

Disproportionate increase in signaling traffic caused due to increase in use of fast-dormancy

“Apple upset several operators last year when it implemented firmware 3.0

on the iPhone with a fast dormancy feature that prematurely requested a
network release only to follow on with a request to connect back to the

network or by a request to re-establish a connection with the network ...”
What's really causing the capacity crunch? - FierceWireless

http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch
http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch
http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch
http://www.fiercewireless.com/nextgenspotlight/story/whats-really-causing-capacity-crunch

Problem #1: Chatty Background Apps

CDF of inter-packet times
for Outlook application
running in background

Fraction of packets
COO0O000000
O—=MNWPLrOIOONOOO —

| Outlook — |

012345678910
Inter-packet times (s)

No distinctive knee
High mispredictions for fixed inactivity timer

Problem #2: Varying Network Conditions

Fraction of packets
eololeloleoleololoNe

Statio:nar:y
_ Mobile-3G —— |

01 2 3 45 6 7 8
Inter-packet times (s)

© 0 ©WwWWWYWOW©W©
O2NWROOI0O =

* Signal quality variations and handoffs cause
sudden latency spikes

* Aggressive timers frequently misfire

Objectives
Design a fast-dormancy policy for long-
standing background apps which
— Achieves energy savings

— Without increasing sighaling overhead

— Without requiring app modifications

When to Invoke Fast Dormancy?

fast dormancy

Packets within End of session - EOS

session /
=t
App
traffic
- M |

Example 1 Example 2

Vv

Energy

Profile Dl

Energy savings when t, = 3 sec and fast dormancy

is invoked immediately after end of session

Problem: predict end of session (or onset of
network inactivity)

ldea: exploit unique application characteristics
(if any) at end of sessions
Typical operations performed:

— Dropbox1.4.7
2 Downloading fil
* Ul element update I
k‘ 5

* Memory allocation or cleanup

* Processing received data

System calls invoked by an app can provide insights

into the operations being performed

Predicting onset of network inactivity

* Technique: Supervised learning using C5.0 decision trees

* Data item: system calls observed immediately after a packet
(encoded as bit-vector)

* Label: ACTIVE or EOS

ACTIVE EOS EOS
data-item data-item da;c:a-ltem
twy g twy W)
I: | I ! 1 1
= | : |
= 91 | ' |
! n ! \ 1 : 1
ol T ' I !
Do | \ :
310 > 10 ! Heo
IR o 3
di a2l 123 2 3
SyStem Ca” o1 A s il B T !
! < o YT ! Tl
trace Q50 138 0. . 28 . . .
X R @R il B =S GN
' i Time
Network I ! I|/ . > L :
traffic ~ p1 P2 | secs P3 :
Packets in packet in

Session 1 session 2

Decision tree example

Application: gnotify DispatchMessage
0 1 ~_

Rules:

(DispatchMessage & ! send) => EOS

I DispathcMessage => ACTIVE
(DispatchMessage & send) => ACTIVE

RadioJockey System

Offline learning

-

_

System Calls

+
Network Traffic

~N

(

Training

\

EC‘EB using C5.0

J

_

J

Runtime Engine

App System Calls

+

Packet timestamps

J

App 1 Rules App k Rules
/
-
| - -
A 1 ‘ 6
& @
\§ _ VAN

v

Tree-

matching

(run-time)

! !Fast Dormancy

[Cellular Radio Interface]

13

Evaluation Overview

1. Trace driven simulations on traces from 14
applications (Windows and Android platform) on
3G network
— Feature set evaluation for training
— variable workloads and network characteristics

— 20-40% energy savings and 1-4% increase in signaling
over 3 sec idle timer

2. Runtime evaluation on 3 concurrent background
applications on Windows

1.4

1.2

0.8

0.6

0.4

1.4

1.2

0.8

0.6

0.4

Energy drain and signaling overhead

Oracle E==2221 RadioJockey s 1s timeout ——3 3s timeout —3 5s timeout /=2 10s timeout ===

alalala dllald

Litestock Yahoo Seesmic Miranda Destroy Gmail Desktop GoChat Google Tweetdeck Lync Twitdroid Live Mail Lync Outlook
Messenger IM Twitter Notify ChangerFacebook Talk (stationary) (mobile)

Energy consumed normalized to a 3-second idle timer approach

KKK XK XK XX A Y]

A

W i

X

X

Litestock Yahoo Seesmic Miranda Destroy Gmail Desktop GoChat Google Tweetdeck Lync Twitdroid Live Mail Lync Qutlook
Messenger IM Twitter Notify Changer Facebook Talk (stationary) (mobile)

Signaling overhead normalized to a 3-second idle timer approach

Runtime Evaluation with Concurrent
Background Applications

Applications | Energy Savings (%) | Signaling Overhead (%)
Outlook 24.03 4.47
GTalk 2407 4.57
Lync 24.14 0
All 22.8 0.90

e 22-24% energy savings at a cost of 4-7 % signaling overhead
 Marginal increase in signaling due to variance in packet timestamps

Summary

* RadiolJockey predicts onset of network
inactivity using system calls invoked by
background apps

e Requires no modifications to existing apps —
legacy, native and managed apps

* Achieves energy savings of 20-40% with
marginal increase in signaling overhead

Backup Slides

Predict using only network features

* Features : IP, ports, TCP flags, HTTP headers

* Performance:
— Energy savings only for simple apps
— No good rules for complex apps(Outlook and Lync)
— Cannot handle apps that use encryption

Varying networks and workloads

1.1

Oracle Bmmmma Static Bmmm Dynamic m
1
a
o 0.9 r
-
o
2 0Bt
m
3 o7l
g
5 06}
=
0.5
0.4
Different Different
Metwork Workload

Energy consumed normalized to a 3-second idle timer approach

Feature Space Exploration and
Choice of Window Size

1.1

1
5 09}
-
o
& 08t
i)
L]
0.7
B
M
TI: G-E' B = - - - - - - = - = -
E
S 05t Syscalls
SysCalls + PrevState —e—
0.4 | SysCalls + PrevState + RetValue
' SysCalls + PrevState + RetValue + Callsite
0.3 - Oracle —=—

0 0.2 0.4 0.6 0.8 1 1.2 1.4
Shutdown Window (s)

PrevState feature captures temporal state information
Adding PrevState into learning boosted savings
t,,of 0.5 seconds sufficient for most applications

Understanding Fast Dormancy Feature

Client controlled
Tail energy reduced to ~1.5)

Without network support

— RRC connection torn down
— DCH/FACH to IDLE
— Ramp-up costs up to 30 msgs

* With network support
— Ramp-down to PCH instead of IDLE
— Ramp-up to DCH incurs 12 msgs

350
E 300

£ 250

g 200

=

3 150

¥ 100
50

0 5

Fast dormancy ca

10 15
Time in Seconds

20

25

30

