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Problem Context: Overheads in
Cellular Radio Usage
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Existing Radio-tail Optimizations
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Existing Radio-tail Optimizations

1. Amortize tail overhead by

shaping traffic
a) TailEnder [IMC 09]

Requires app changes

2. Adapt tail using Fast-dormancy
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Fast Dormancy Woes

Data growth rate
in period:
65%

Signaling growth
rate in period:
177%
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Data and signaling traffic by terminal type,
measured November 2010
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Disproportionate increase in signaling traffic caused due to increase in use of fast-dormancy

“Apple upset several operators last year when it implemented firmware 3.0

on the iPhone with a fast dormancy feature that prematurely requested a
network release only to follow on with a request to connect back to the

network or by a request to re-establish a connection with the network ...”
What's really causing the capacity crunch? - FierceWireless
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Problem #1: Chatty Background Apps

CDF of inter-packet times
for Outlook application
running in background
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Problem #2: Varying Network Conditions
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* Signal quality variations and handoffs cause
sudden latency spikes

* Aggressive timers frequently misfire



Objectives
Design a fast-dormancy policy for long-
standing background apps which
— Achieves energy savings

— Without increasing sighaling overhead

— Without requiring app modifications



When to Invoke Fast Dormancy?

fast dormancy
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Problem: predict end of session (or onset of
network inactivity)

ldea: exploit unique application characteristics
(if any) at end of sessions
Typical operations performed:

— Dropbox1.4.7
2 Downloading fil
* Ul element update I
k‘ 5

* Memory allocation or cleanup

* Processing received data

System calls invoked by an app can provide insights

into the operations being performed




Predicting onset of network inactivity

* Technique: Supervised learning using C5.0 decision trees

* Data item: system calls observed immediately after a packet
(encoded as bit-vector)

* Label: ACTIVE or EOS
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Decision tree example

Application: gnotify DispatchMessage
0 1 ~_

Rules:

(DispatchMessage & ! send) => EOS

I DispathcMessage => ACTIVE
(DispatchMessage & send) => ACTIVE



RadioJockey System
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Evaluation Overview

1. Trace driven simulations on traces from 14
applications (Windows and Android platform) on
3G network
— Feature set evaluation for training
— variable workloads and network characteristics

— 20-40% energy savings and 1-4% increase in signaling
over 3 sec idle timer

2. Runtime evaluation on 3 concurrent background
applications on Windows
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Energy drain and signaling overhead
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Runtime Evaluation with Concurrent
Background Applications

Applications | Energy Savings (%) | Signaling Overhead (%)
Outlook 24.03 4.47
GTalk 2407 4.57
Lync 24.14 0
All 22.8 0.90

e 22-24% energy savings at a cost of 4-7 % signaling overhead
 Marginal increase in signaling due to variance in packet timestamps



Summary

* RadiolJockey predicts onset of network
inactivity using system calls invoked by
background apps

e Requires no modifications to existing apps —
legacy, native and managed apps

* Achieves energy savings of 20-40% with
marginal increase in signaling overhead



Backup Slides



Predict using only network features

* Features : IP, ports, TCP flags, HTTP headers

* Performance:
— Energy savings only for simple apps
— No good rules for complex apps(Outlook and Lync)
— Cannot handle apps that use encryption



Varying networks and workloads
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Feature Space Exploration and
Choice of Window Size
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PrevState feature captures temporal state information
Adding PrevState into learning boosted savings
t,,of 0.5 seconds sufficient for most applications



Understanding Fast Dormancy Feature

Client controlled
Tail energy reduced to ~1.5)

Without network support

— RRC connection torn down
— DCH/FACH to IDLE
— Ramp-up costs up to 30 msgs

* With network support
— Ramp-down to PCH instead of IDLE
— Ramp-up to DCH incurs 12 msgs
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