Serving Ads from localhost for Performance, Privacy, and Profit

Saikat Guha, Bin Cheng, Alexey Reznichenko, Hamed Haddadi, Paul Francis

Max Planck Institute for Software Systems Kaiserslautern-Saarbrücken, Germany

October 22, 2009

Nothing certain except...

Death
Taxes
Advertising

- Annoying
 - Quality sucks
 - ► So they push quantity, obtrusiveness
- ▶ Slow
 - Multiple round-trips to distant ad server
 - ► Stalls webpage rendering
- ▶ Invade Privacy
 - Google/Doubleclick sees every website we visit
 - Disgruntled employee in league with insurance company...game over.

- ► Annoying
 - Quality sucks
 - ► So they push quantity, obtrusiveness
- ▶ Slow
 - Multiple round-trips to distant ad server
 - Stalls webpage rendering
- ▶ Invade Privacy
 - Google/Doubleclick sees every website we visit
 - Disgruntled employee in league with insurance company...game over.

- Annoying
 - Quality sucks
 - ▶ So they push quantity, obtrusiveness
- ▶ Slow
 - Multiple round-trips to distant ad server
 - ► Stalls webpage rendering
- ► Invade Privacy
 - Google/Doubleclick sees every website we visit
 - ► Disgruntled employee in league with insurance company...game over.

- 1. Clean Dirty slate
 - ► Supports today's advertising business model
- 2. Private enough
 - ► To convince privacy-advocates and governments
- Good at targeting
 - Increased privacy begets better personalization
- Scalable
 - yada yada yada

- 1. Clean Dirty slate
 - ► Supports today's advertising business model
- 2. Private enough
 - ► To convince privacy-advocates and governments
- Good at targeting
 - Increased privacy begets better personalization
- Scalable
 - yada yada yada

- 1. Clean Dirty slate
 - Supports today's advertising business model
- 2. Private enough
 - ► To convince privacy-advocates and governments
- 3. Good at targeting
 - Increased privacy begets better personalization
- Scalable
 - yada yada yada

- 1. Clean Dirty slate
 - Supports today's advertising business model
- 2. Private enough
 - To convince privacy-advocates and governments
- 3. Good at targeting
 - Increased privacy begets better personalization
- 4. Scalable
 - yada yada yada

Untrusted Client Software Agent

- Tracks user activity (webpages, apps)
- Profiles user, serves ads, reports ad events
- Runs inside sandbox (can be monitored by anti-virus)

- ▶ Dealer learns client X clicked on some ad
- ▶ Broker learns <u>someone</u> clicked on ad Y

How Deep the Rabbit Hole Goes...

- Google Ads Study
- CoDeeN User Study
- User profiling
- Dissemination
- Auctions
- Click-Fraud
- Anonymizing the Click
- Crypto w/ optimizations
- Reference Monitor
- Privacy Analysis
- Implementation and Microbenchmarks

Step 1: Convince privacy-advocates and antivirus-firms

Not only "not bad", but in fact "good alternative"

NOT for those:

► who don't see/click ads today

▶ use AdBlockers

For people who make Google \$20B every year.

\$\$\$\$ Installed by default with privacy-conscious browsers

Step 3: Convince or compel Google, or compete

- ▶ Better value, lower risk
- ▶ Or apply pressure through regulatory agencies

Step 1: Convince privacy-advocates and antivirus-firms

- Not only "not bad", but in fact "good alternative" to privacy-compromising cloud-based advertising
- ► Ensure user experience not degraded in any way

Step 2: Multiple deployment vehicles

- \$ Standalone, or bundle third-party software
 - Surprisingly tenable. Based on CoDeeN study Surprisingly tenable.
- \$\$ Or bundled with third-party software
- \$\$\$\$ Installed by default with privacy-conscious browsers

Step 3: Convince or compel Google, or compete

- ▶ Better value, lower risk
- ▶ Or apply pressure through regulatory agencies

- Step 1: Convince privacy-advocates and antivirus-firms
 - ► Not only "not bad", but in fact "good alternative" to privacy-compromising cloud-based advertising
 - ► Ensure user experience not degraded in any way
- Step 2: Multiple deployment vehicles
 - \$ Standalone, or bundle third-party software
 - \$\$ Or bundled with third-party software
 - \$\$\$\$ Installed by default with privacy-conscious browsers
- Step 3: Convince or compel Google, or compete
 - ▶ Better value, lower risk
 - ▶ Or apply pressure through regulatory agencies

- Step 1: Convince privacy-advocates and antivirus-firms
 - ► Not only "not bad", but in fact "good alternative" to privacy-compromising cloud-based advertising
 - ► Ensure user experience not degraded in any way
- Step 2: Multiple deployment vehicles
 - \$ Standalone, or bundle third-party software
 - \$\$ Or bundled with third-party software
 - \$\$\$\$ Installed by default with privacy-conscious browsers
- Step 3: Convince or compel Google, or compete
 - Better value, lower risk
 - ► Or apply pressure through regulatory agencies

Step 1: Convince privacy-advocates and antivirus-firms

▶ Not only "not bad", but in fact "good alternative"

@Microsoft: Want to "frakkin' kill" Google?

ıg

Step 2: N Already own endhost OS and browser. Can deploy agent easily.

go

► Already an ad broker.

vsers

► Already got FTC, anti-virus, and privacy watchdogs on your side (against Google).

Step 3: (

- ► Better value, lower risk
- Or apply pressure through regulatory agencies

Status

- Protocols defined
 - ► Stable: Dissemination, Reporting, Reference Monitor, Crypto w/ optimizations
 - ► May evolve: Auctions, Click-Fraud
- ► Implemented, pilot deployment
 - ► Firefox plugin
- Next steps
 - ► Talk to privacy-advocates, brokers
 - ► Real deployment and measurements...

Summary

- Practical privacy-preserving online advertising
 - ► Better targeting, significantly better privacy, no changes to business models, scalable
- Full system*
 - Profiling, Dissemination, Auctions, Reporting, Click-Fraud, Scalability, Auditing, Deployment incentives
- ► Call to action
 - If you hate online ads, help fix it!
 - Lots of interesting research directions (and low-hanging fruit!)

^{*}See http://mpi-sws.org/tr/2009-004.pdf

Questions?

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Understanding Google Search Ads

- ► Sampled Google search ads for 1 month
- ► Every 30 minutes
- ▶ 1.3K random keywords (from 100K keyword dictionary)
- ► Geo-diverse vantage points

Understanding Google Search Ads

Ad Skew: 10% (generic) ads shown 80% of the time. **Ad Churn:** 30%–40% ads change hour-hour/day-day. 5%–10% replaced permanently.

Understanding Google Search Ads

Ad Skew: 10% (generic) ads shown 80% of the time. Ad Churn: 30%–40% ads change hour-hour/day-day. 5%–10% replaced permanently.

Design implications:

- ► Generic ads: may disseminate widely and cache.
- Rest cannot flood. Update traffic too high.

Questions?

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Understanding CoDeeN users

- ► CoDeeN click stream for 1 month
- ► Filtered bots using CoDeeN's bot detector
- ▶ 31K users; some bots still

Understanding CoDeeN users

Ad Block: Only 10–20%; tad low?

Third-party Crap: 21%; surprisingly high?

		Ad		3rd-Party	Ad
	Users	Views	CTR	Toolbars	Blockers
China	7308	39K	0.5 %	22 %	12 %
Saudi Arabia	6710	56K	2.7 %	40 %	9 %
United States	1420	19K	0.9 %	13 %	17 %
U.A.E	1322	8K	1.7 %	35 %	8 %
Germany	956	5K	1.5 %	7 %	19 %
Worldwide	30987	189K	2.5 %	21 %	12 %

Understanding CoDeeN users

Ad Block: Only 10–20%; tad low?

Third-party Crap: 21%; surprisingly high?

Deployment implications:

- ► Ad-supported business models still viable
- Many users will install anything, and forget? (if it isn't disruptive)
- ► Even for somewhat tech. savvy users; likely more so for typical users

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Profiling the User

Multiple complementary approaches

- ► Crawling: Broker maps website-keywords. Client queries anonymously.
 - Identical to today (but private)
 - Sophisticated classifiers
 - ► Not for sites with user login. Or desktop apps.
- Scraping: Client scrapes websites
 - Simple classifiers
 - May be combined with anonymized access to sophisticated classifiers
 - Works for sites with user login. And desktop apps.

Profiling the User

- ► Metadata: Website embeds keywords in webpage served.
 - ► Incentivise by offering part of ad revenue
 - Client tracks and sends in report which websites contributed profile info that led to click. (different from website showing adbox)
- ► User/Social Feedback: Direct user feedback (+/-) on ads. Client may also affect clients of OSN friends.

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Ad Dissemination

- ▶ Broker doesn't learn anything about client
- ► Simplest: Flood all ads to all clients
 - ► Won't work. Easily 2+ GB per month, probably much more. Based on Google Ads study ••••.
- ► We propose privacy-preserving Pub-Sub

Ad Dissem: Privacy-preserving Pub-Sub

- ► Define categories of ads
 - ► Amazon defines over 100K of these, e.g. electronics.camera+photo.panasonic.camcorders.-accessories.memory+media.media.minidv
 - Actual number is scalability-privacy tradeoff
- ► Client subscribes to channels (through Dealer)
 - ► Channel is ad category plus broad demographics e.g. gender, location, language
- ▶ Broker publishes ads (through Dealer)
 - Ads nearing daily budget not published
 - ► Not all ads published match client because of sensitive demographics e.g. marital-status
 - ▶ Published ads expire after some time

Ad Dissem: Privacy-preserving Pub-Sub

- ▶ K unique to this subscription
- ► Dealer learns client X subscribed to <u>some</u> chan
- ► Broker learns <u>someone</u> subscribed to channel Y
- ► Broker cannot link multiple subscriptions from same client. (Otherwise can build up profile over time)

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Auctions

- ► Fair marketplace where advertisers influence frequency and position of ads through bids
- Preserve user privacy, and advertiser bid privacy
- ▶ **Design-I:** Simple Auction
- ▶ **Design-II:** Combined Auction
 - ► Identical to Google's GSP Auction today
- ▶ Will evolve as new approaches are added

Auctions: Simple Auction

- ► Coarse-grained but very simple
- ► Channel granularity. Bins ranked by global metrics. Ads in bins ranked by user metrics.
- ▶ No changes to protocols; no impact on privacy

Auctions: Combined Auction

- ▶ Identical to Google model. Incl. 2nd price.
- ► Fine-grained. Per user ads ranked by global and user metrics.
- ▶ Private for both user, and advertiser

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Detecting Click-Fraud

- ► Client is untrusted. Protocol is public.
 - ► Much like today (browser, HTTP)
- ▶ No silver bullet. Constant arms race.
- ▶ Basic approach: Defense in depth
 - ► Lots of overlapping detection mechanisms
 - ► Each requires time and effort to circumvent
 - ► Together raise the bar considerably
- ▶ Will evolve as new approaches are added

Detecting Click-Fraud

- ► Thresholds: Dealer flags clients with abnormally high number of subscriptions, views, clicks, or click-through ratio.
 - Forces attacker to use botnet
 - Cannot use same botnet for multiple attacks
- Blacklists: Dealers use lists of known bots (from antivirus or network telescope). Dealers share list of banned clients.
 - ▶ Limits window of time a bot is useful.
- ► Honeyfarms: Broker operates honeyfarm susceptible to botnet infections.
 - Honeyfarm detection armsrace. Advantage Broker.

Detecting Click-Fraud

- ► Historical Statistics: Broker tracks historical volume of views, and click-through-rates for each publisher, and each advertiser. Flags abrupt changes.
 - Forces gradual attacks
 - Buys time for other approaches
- Bait Ads: Synthesized ads with content from one ad, and targeting information from a completely different ad. Expect few legit clicks.
 - ► Think CAPTCHAs for ads.
 - Attacker could use cheap human labor
 - ► Potentially more time-consuming
 - ▶ Bait = semantic. CAPTCHA = syntactic.
 - ► Especially in non-English-native countries

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Anonymizing the Click

User Privacy vs. Advertiser:

- ▶ Open question: What is "good enough"?
- ► Advertiser can see <u>IP address</u> if user clicks; also knows targeting info of ad that matched user. May link multiple clicks.
 - ► But clicks are rare; but payoff could be significant
 - Anonymizing proxy? Proxy learns profile. TOR?
 - ► Approach: anonymizing the click
 - ► Good enough? Don't know.
- Advertiser may link to user identity through credit-card
 - Single-use credit card tokens?
- Or shipping address for physical products
 - Anonymous remailers? (i.e. TOR for post)

Anonymizing the Click

- Client pre-establishes (single-use) SKey
- User privacy preserved
 - ▶ Broker, Advertiser don't learn which Client.
 - Dealer doesn't learn what Advertiser.
- Broker drops out at some point
 - Informs user what advertiser can learn
 - Open question: when?
 - ► After landing page?
 - Certainly before user inadvertently reveals PII
 - Or advertiser could encrypt exchange

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Cryptographic Overheads

- Symmetric key operations quite fast
 - ▶ With hardware, can operate at line speeds
- ▶ Biggest concern: public-key operations
- ► Insight: Leverage idle clients
 - Save on datacenter costs (cores, cooling)

Offloading Public-Key Operations

- ▶ Broker learns M without any public-key ops.
- ▶ D1, D2 do not learn M. Can't MITM.

Offloading Public-Key Operations

- ▶ Broker, O1, O2 do not learn client identity.
- ▶ New keys for each message. Broker cannot link.

Offloading Public-Key Operations

► 20x performance improvement in real deployment. See Microbenchmarks •••

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Reference Monitor Design

- ► Blackbox monitoring of client
 - Allows brokers to have proprietary code in client
 - ► Allows for complex clients
- ► Monitor itself very simple
 - ► Open source
 - Created by privacy-advocates, or anti-virus vendor, or browser vendor, and verified by another
 - Correctness verified manually

Reference Monitor Design

What it does:

- Validates message contents
 - Client gives it plain text
 - Monitor validates, then encrypts
 - ▶ Thus no covert channel in salts, paddings, etc.
- ▶ Source of all randomness in messages
 - ► Specifically, generates session keys for Pub-Sub Ad Dissemination

 Specifically, generates

 Specifically, generates

 ■
 - ▶ Thus no covert channel in keys
- Staggers message bursts
 - May add arbitrary delay/jitter
 - Disrupt any covert channel in message timing
 - ► All protocol exchanges designed with this in mind (i.e. completely asynchronous)

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

User Privacy

- ▶ vs. Publisher
 - ▶ Privad doesn't change anything here
 - Client free to use anonymizing proxies as today
- vs. Advertiser
 - ► In theory, Privad doesn't change anything
 - In practice, Privad has better targeting. Advertiser can infer more on click.
 - ► Approach: Anonymizing the Click **C**50
- ▶ vs. Broker, vs. Dealer
 - Unlinkability: no user information can be associated with user's identity using internal or external means.

User Privacy

- 1. No Personally Identifying Information (PII), except IP address, explicitly leaves client
 - ► Validated by Reference Monitor **P**
- 2. Dealer knows IP address, but no other user information
- 3. Broker has access to user information, but not IP address
 - Cannot link user information from multiple messages over time
 - ► Very little user information in any given message
 - ► Cannot de-anonymize user using external databases

Privacy Non-Goals

- ▶ Protecting ad targeting information
 - Desirable or undesirable debatable
 - e.g. cigarette companies targeting pre-teens
 - OTOH, targeting as competitive edge
- ► Protecting against malware
 - Malware can see client data
 - OS could impose process based ACL (e.g. SELinux)
 - But fundamentally, malware can anyway spy on user

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •

Implementation and Pilot Deployment

Implementation:

- Client and Simple monitor
 - ► 150kB Firefox addon[†]; 4.2K LoC
 - ► Simple profiling (Facebook, Google Ad Preferences)
 - Ad dissemination, combined auctions, ad event reporting, crypto offload
- ▶ Broker, Dealer
 - ▶ Java servlet; 800 LoC and 300 LoC
- ▶ Wire protocol
 - ▶ JSON over HTTP; 2.4K LoC
 - In retrospect, mistake. Everything optimized; serialization/deserialization for text-based RPC now bottleneck.

[†]See http://adresearch.mpi-sws.org

Implementation and Pilot Deployment

Deployment:

- ► Client scrapes Google ads, adds synthetic targeting and bid information
- ▶ Broker publishes to other clients
- ► Clients inject ads into existing Google adboxes
- ▶ Handful of alpha testers (\sim 70)

Implementation and Pilot Deployment

Challenges:

- Webpage scraping is laborious
 - ► 20% of client code for just 2 websites
 - ► Not to mention keeping up-to-date
 - Could crowd-source module development/maintenance
 - Could build tools to generate scraping code
- Defining ad categories and mapping scraped information non-trivial
 - ► Currently, scraped info well structured. Categories superset of scraped info. Mapping trivial.
 - Problematic for unstructured information
 - Potentially, one-time manual effort plus small maintenance effort

Microbenchmarks

- ► Client: workstation, laptop, netbook
 - ► Serving: < 30ms for 100K local ads; 10x faster than today
 - ► Crypto: Unnoticeable 50–200ms; anyway async.
- ▶ Broker: 3GHz single-core
 - ► Subscribe/Reports without offload: bottleneck public-key ops. (~280 req/sec)
 - ▶ with offload: bottleneck RPC >6K req/sec
 - ► Publish: bottleneck symmetric-key ops. 750M ads/day
 - ► Auctions: depends on privacy 30K-80K ads/sec
- ► Dealer: 3GHz single-core
 - ▶ 200K clients per core. Client polls; bottleneck sockets

Google Ads Study
CoDeeN User Study
User profiling
Dissemination
Auctions
Click-Fraud
Anonymizing the Click
Crypto w/ optimizations
Reference Monitor
Privacy Analysis
Implementation and Microbenchmarks • • • •