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ABSTRACT

There have been many attempts at designing transport
protocols that operate more aggressively than TCP for
high bandwidth-delay product networks. Recent attempts
exploit finer-grained feedback from the network, either
explicitly as with XCP, or implicitly as with FastTCP.
In this paper, we propose a new approach to increased
aggressiveness that is complementary to previous ap-
proaches. We assign the packets from a given transport
flow into two strictly prioritized flows. The higher prior-
ity flow operates with normal conservative AIMD. The
lower priority flow, however, aggressively exploits spare
capacity in the network while not interfering with AIMD
flows. We provide simulation results that suggest that this
priority-layered approach can yield high throughput even
in a lossy network with limited buffers, and can consid-
erably improve the completion time of short flows.

1 INTRODUCTION

There has been a sustained interest in the recent past
to improve the performance of transport protocols over
high bandwidth-delay product networks. These proto-
cols operate by increasing congestion control aggres-
siveness by using MIMD instead of AIMD, while re-
maining stable and fair. FastTCP [3] does this by using
MIMD only as long as delays do not increase, and mov-
ing slower when delays increase. XCP [2] does this by
having routers monitor congestion and explicitly coordi-
nate with sources to insure that in the aggregate, flows
add the spare bandwidth available at the bottleneck.

This paper presents a new approach, called Priority-
Layered Transport (PLT), to increasing aggressiveness.
Specifically, PLT assigns packets from a given single
transport flow into two strict priority classes. This results
in two flows, a high-priority flow and a low-priority flow.

The high-priority flow, which runs at the same priority
level as competing TCP flows (i.e. best effort), operates
conservatively (AIMD). The low-priority flow, however,
operates aggressively, thus exploiting spare capacity in
the network. Because the two flows are strictly prior-
itized, however, the aggressive low-priority flow never
interferes with the conservative high-priority flow or
legacy TCP flows. This isolation affords us considerable
flexibility in the design of the aggressive low-priority
component of the congestion control algorithm. For in-
stance, the aggressive component itself need not nec-
essarily be stable under all conditions, or even be fair
with respect to the aggressive components of other trans-
port flows. Put another way, this isolation insures that we
won’t do worse than regular TCP, and will often do sub-
stantially better.

The only requirements that PLT places on the network
is that priority queuing, which is already implemented
in routers as part of DiffServ, be ‘turned on’. While this
is not the case across the general Internet, it can easily
be arranged for VPNs. The transport protocol at the end
hosts must also be modified, but again this can be ar-
ranged in a private network.

This paper makes the following contributions.

• We propose a new approach to transport congestion
control, PLT, that exploits priority queueing in the
network to increase aggressiveness while remaining
stable and fair.

• We describe a simple strawman protocol based on
the PLT approach, and present preliminary simula-
tion results which show that PLT considerably out-
performs legacy TCP in throughput for long flows
and completion time for short flows over lossy high
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delay-bandwidth product networks1.

The paper is organized as follows. Section 2 outlines
some related work. Section 3 presents our strawman pro-
tocol design based on PLT, and section 4 presents the
results of a simulated comparison of PLT and TCP. Sec-
tions 5 concludes the paper and shows directions for fu-
ture work.

2 RELATED WORK

TCP’s limitations in high bandwidth-delay product net-
works were exposed in [4] and [5]; the authors had ana-
lytically proven that when the bandwidth-delay product
of the network is high, it is difficult for TCP to maintain
large average congestion windows even at low loss prob-
abilities. Since then, there has been a host of alternative
proposals to improve the performance of transport pro-
tocols in high bandwidth-delay product networks. Let us
look at some of these protocols first in this section.

XCP ([2]) revamps the transport protocol to include
support from the network in the form of an explicit feed-
back to the sender. This form of explicit congestion feed-
back is in direct contrast to the binary loss-based con-
gestion signal used in TCP. An XCP-enabled router peri-
odically calculates the spare capacity that should be uti-
lized by the flows through it. The router then fairly dis-
tributes this capacity across all flows based on their re-
spective congestion window sizes and RTT values and
suggests the window change for each flow, as and when
packets from the flows traverse through that router. The
suggested value is overwritten on the packet only if the
value from previous routers in the path is greater than the
former. This ensures that the XCP sender eventually re-
ceives the window change from the bottleneck link and
makes the necessary changes to its window size.

FastTCP ([3]) revived the interest in delay-based con-
gestion protocols that had initially started with TCP-
Vegas ([6]). Delay-based feedback offers much more
control and stability to the window evolution than the
oscillation-prone loss-based feedback. In FastTCP, the
congestion window value for each flow is maintained
such that it is just enough for the bottleneck link to get
saturated and start queuing up. Though FastTCP cuts
back aggressively during losses which are bound to hap-
pen when the network is subject to heavy dynamics, it

1A comparison study of PLT with other protocols specialized in
high bandwidth-delay product networks is left as part of future work.

ramps up multiplicatively, with the increase factor de-
pending on the current congestion window size and the
queuing delay; the factor reduces once queueing delay
becomes non-zero. [3] shows that such a setup can lead
to very fast convergence.

Apart from the two protocols mentioned above, there
have been other protocols ([7], [8]) which augment the
performance of TCP by altering its congestion algo-
rithm to increase aggressively and decrease gracefully.
But they are still unstable in the presence of high dynam-
ics as shown in [3] and [9].

There have been some works in the past that make
use of priority queuing in routers to enhance TCP’s per-
formance. TCP-Peach ([10]) is one such protocol de-
signed for satellite networks. TCP-Peach uses ’dummy’
segments at the low priority to probe the availability of
bandwidth in bottleneck links. The sender gathers feed-
back from the receiver for these probes and increases its
congestion window accordingly. PLT differs from TCP-
Peach in actually sending data packets at the low prior-
ity so as to utilize the spare bandwidth at the bottleneck
quickly.

Fast Start ([11]) modifies TCP’s slow start to en-
sure faster completion of short and bursty data transfers.
When a TCP connection is established, the initial val-
ues of TCP’s parameters such as cwnd, ssthresh are set
to the values based on the end host’s cached history. If
the initial value of cwnd is greater than unity, TCP enters
the fast start phase wherein one packet is sent at a high
priority while the remaining number (cwnd-1) of packets
are sent through low priority. Fast Start lasts at most for a
single RTT during the slow start phase and can stop pre-
maturely if there are multiple losses. In contrast, the low
priority traffic of PLT takes part during the entire course
of a TCP connection so as to prevent the bottleneck from
being under-utilized.

3 PROTOCOL DESCRIPTION

We begin with an overview of PLT followed by a brief
description of its components.

The schematic diagram of the protocol is shown in
Figure 1. The sender side comprises of four basic mod-
ules. The twocontrol modules(CM’s) as shown in the
figure, perform the central protocol processing functions
namely flow control, congestion control, and error recov-
ery. The two CM’s are the high priority control module
(HCM) which runs the legacy TCP congestion control
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Figure 1: A schematic diagram of PLT.

algorithm and the low priority control module (LCM)
which works in tandem with HCM. The packet manager
(PM) assigns the next packet to send for each of the con-
trol modules. Finally, the transfer module (TM) sends
and receives packets through the underlying network.

The receiver side is a TCP-SACK receiver with addi-
tional capabilities of marking ACK packets with priority
levels and maintaining individual outstanding windows
for the HCM and the LCM.

3.1 Congestion Control in LCM

LCM contributes to the aggressive behavior of PLT
through its congestion control. LCM has to accomplish
two goals in achieving this aggression: one is to sense
if there is any under-utilized bandwidth in the bottle-
neck and the other is to quickly ‘grab’ this under-utilized
bandwidth.

To achieve these goals, we have adopted a simple
loss-rate-based congestion control algorithm at the LCM
which is similar to the one proposed in [12]. According
to the scheme, the LCM tries to limit its loss rate to at
most atarget loss rateµ, a threshold at which the LCM
operates. The LCM changes its window size based on the
loss rate that it has incurred in the recent past and the pa-
rameterµ. The LCM is aggressive as long as its observed
loss rate is less thanµ and cuts back when it incurs higher
loss rates. Hence, in practice, the LCM should adaptively
calculateµ based on the channel characteristics and the
current loss scenario in the network. In this paper, how-
ever, we setµ statically.

Time is divided into epochs, each epoch roughly span-
ning the RTT of the flow (calculated using the existing
approach in TCP). At the end of each epoch, the LCM

calculates the loss rate (p) during that epoch as the ratio
of the number of lost packets to the total number of pack-
ets for which the receiver had responded to. The overall
loss rate (P) is then calculated as an exponential moving
average. The LCM then reassigns its congestion window
(cwnd) as:

cwnd=

{
α.n+cwnd if P < µ
β .cwnd otherwise

where α is the increase factor,β is the decrease fac-
tor, andn is the number of packets acknowledged by
the receiver in the epoch. We see that the LCM uses
an MIMD approach for congestion control; this is be-
cause an MIMD approach seizes an under-utilized chan-
nel faster than AIMD. Apart from this periodic window
control,cwndmay have to be decreased when there is a
timeout. So we introduce another parameterγ which is
the decrease factor for the window cutback during time-
outs.

3.2 The Transport Protocol

The packet manager (PM) receives data from the appli-
cation and maintains the input buffers for the two con-
trol modules. The control modules send packets as long
as their congestion window and the outstanding window
sizes allow them to do so.

3.2.1 Error Recovery at the LCM

LCM adopts a simple error recovery mechanism. The
LCM retransmits a lost packet some number of times af-
ter which it gets finally retransmitted at the HCM. In our
current system, retransmissions do not occur at the LCM
and we allow a lost LCM packet to be retransmitted di-
rectly at the HCM, for the sake of protocol simplicity.
For this to happen, the LCM informs the loss to the PM
which then simply enqueues the packet into a retransmit
buffer maintained by the PM.

As we can see from Figure 1, the input buffer com-
prises of two sets of packets: the first is the queue of
packets from the LCM waiting for retransmission while
the second is the queue of non-transmitted packets from
the application. The HCM prioritizes sending lost LCM
packets over packets not yet transmitted. As for the
LCM, it checks only the set of non-transmitted packets
for the next packet to send2.

2The LCM can make an exception by retransmitting a lost LCM
packet if it finds the TCP window to be very small when compared to
the size of the retransmit buffer.
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Figure 2: Multiple bottleneck topology.

3.2.2 ACK Mechanism at the receiver

The PLT receiver sends an ACK for every packet that
it received. To ensure that the reverse traffic does not
affect the other connections, the receiver can choose to
send ACKs for the low-priority packets at the low prior-
ity. Such a design could potentially result in ACK losses,
but will not adversely affect the performance of the pro-
tocol since TCP is known to be robust to ACK losses.
In fact, to further reduce the low priority ACK overhead,
the receiver can choose to use the delayed ACK mech-
anism (to send an ACK for everyn low priority packets
received).

4 PERFORMANCE

This section presents a preliminary ns-2 simulation study
of PLT in high bandwidth environments. The HCM in
these simulations is TCP-Reno.

The results of our simulations primarily highlight
three important benefits of the protocol.
1) Sustained goodput with small buffers
2) Sustained goodput amidst losses
3) Fast completion of short flows

4.1 Experimental parameters

The following table lists the parameters invariant in our
simulations, unless specified otherwise.

Parameter Policy/ Value
Increase factorα 0.1

Decrease factorβ 0.95

Timeout decrease factorγ 0.75

Bottleneck bandwidth (BBW) 250 Mbps

Max. Receiver Window 3.BW.RTT

Router Drop Policy Tail drop

Epoch Duration 100ms

Simulation time limit 1200s

Target loss rate (µ) 0.5%

Most of the simulations presented in this paper are run
on a single bottleneck link with a round-trip time of
80ms. To observe the effect of the protocol on the size of
the bottleneck buffer, we experimented with both large
and small buffer sizes: one equal to the bandwidth delay
product (BBW.RTT≈2500) and the other, 10% of this
product.

We have also conducted experiments on a topology
with multiple bottleneck links (Figure 2). There are
two bottleneck links each of which has a bandwidth of
250Mbps. There are nine competing TCP file transfers
in the setup, arriving one after another, along with vari-
ous rates of UDP traffic on the second bottleneck link to
compete with the other flows.

4.2 Single flow

Figure 3 shows the goodput of a single flow with an in-
finite source and a single bottleneck link for various ran-
dom loss rates for PLT and TCP. As expected ([4]), TCP
fares very poorly even at a loss rate of 0.01%. By con-
trast, PLT yields very high goodputs even at a non-zero
loss rates.

With zero loss rate, the window evolution of the HCM
(TCP-Reno) shown in Figure 4 is well-known. At zero
loss rates, the LCM window increases during those times
when the HCM is not filling the bottleneck queue, but
backs off otherwise.

As for the LCM window evolution at zero loss rate
(Figure 5), it can expect to send packets successfully as
long as the bottleneck is not saturated by HCM packets.
But when the bottleneck queue starts getting filled up by
the HCM packets, the LCM packets cannot make it to
the receiver. Hence, the LCM times out and cuts back
successively till either the LCM window size goes below
one or the bottleneck gets under-utilized again (poten-
tially due to a HCM cutback).

With non-zero loss rates (figures 4 and 5), the HCM
never fills the queue, and so the LCM kicks in and uti-
lizes the available capacity. This results in near-perfect
goodputs as shown in Figure 3.

When we limit bottleneck buffer sizes (figures 6, 7,
and 8), the role of LCM at zero loss rate is more pro-
nounced, as the LCM exploits TCP’s inability to keep
the bottleneck buffer full at times. Figure 6 shows that
PLT exhibits much higher goodputs than legacy-TCP.
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Figure 3: Goodput with large buffers
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Figure 4: HCM window with large buffers
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Figure 5: LCM window with large buffers
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Figure 6: Goodput with small buffers
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Figure 7: HCM window with small buffers
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Figure 8: LCM with small buffers
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Figure 9: Short flow completion time

4.3 Competing Flows

4.3.1 Completion time for short flows

We tested the completion time of flows arriving at a Pois-
son rate of 1250 flows per second: the rate is just enough
to saturate the pipe. The volume of the flows is pareto
distributed with an average size of 25 packets as is the
case with Internet flows. Figure 9 shows the frequency
distribution of the flow completion times, with the flows
arranged in increasing order of size. We find that more
than 90% of the PLT flows complete within a single RTT
while TCP takes two or more RTTs to complete flows
with similar sizes. While PLT’s good performance here
is of course due to the fact that the initial congestion win-
dow of the LCM is high enough to fill the pipe, we note
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Figure 10: Efficiency over multiple bottleneck flows

that it is the fact that LCM packets run at lower priority
that allows us to set the initial window size aggressively.

4.3.2 Multiple Bottlenecks

With the multiple bottleneck topology, we introduce
UDP traffic to compete with the TCP flows hence re-
sulting in cutbacks in TCP’s congestion window and de-
crease in goodput. We observed the bottleneck utilization
for various rates of the UDP traffic. Figure 10 shows that
PLT can yield 90% average utilization in both the bot-
tleneck links even at high UDP traffic rates. We find that
with a 50Mbps UDP traffic, there is a 20% utilization
increase with PLT, when compared to TCP. Since this
utilization advantage is due to LCM and the retransmis-
sions of LCM packets at the HCM account for less than
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1% of the bottleneck bandwidth, we can conclude that
PLT’s aggregate goodput increases by 20% of the bottle-
neck bandwidth.

5 CONCLUSIONS AND FUTURE WORK

This paper presents Priority-Layered Transport, a novel
approach for increasing the aggressiveness of transport
protocols while remaining stable and fair to TCP flows.
This paper also presents preliminary simulations show-
ing that a simple strawman version of PLT performs well
better than legacy TCP. While we are encouraged by
these results, it is hard to draw strong conclusions from
this work other than to say the idea has promise. To draw
broader conclusions, much work needs to be done.

First, we need to better understand the behavior of our
own algorithms over a broad range of operating condi-
tions. Specific questions include: Are PLT flows fair to
each other, especially when losses force the aggressive
low-priority component to dominate? Can the target loss-
rate parameterµ be dynamically tuned? How should the
initial window size be set so that it doesn’t unduly in-
terfere with existing PLT flows? One possible idea here
is to set the initial window very aggressively (essentially
try to saturate the link), but transmit these initial packets
at a third, still lower priority level. Is legacy TCP a good
choice for the conservative high-priority component, or
would a more aggressive transport like FastTCP be a bet-
ter choice?

Once we are convinced we have a good version of PLT,
we need to analyze it. We also of course need to compare
it head-to-head with the best-of-breed transports, includ-
ing at least FastTCP and XCP. We also need to imple-
ment PLT in real systems and test it in emulated and real
environments.
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